
Polyspace® Bug Finder™

User’s Guide

R2015b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Bug Finder™ User’s Guide
© COPYRIGHT 2013–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

September 2013 Online only New for Version 1.0 (Release 2013b)
March 2014 Online Only Revised for Version 1.1 (Release 2014a)
October 2014 Online only Revised for Version 1.2 (Release 2014b)
March 2015 Online only Revised for Version 1.3 (Release 2015a)
September 2015 Online only Revised for Version 2.0 (Release 2015b)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

Project Configuration
1

What Is a Project? . 1-3

What is a Project Template? . 1-4

Open Polyspace Bug Finder . 1-5

Create New Project . 1-6

Create Project Automatically . 1-7

Requirements for Project Creation from Build Systems . . . 1-10

Compiler Not Supported for Project Creation from Build
Systems . 1-13

Issue . 1-13
Cause . 1-13
Solution . 1-13

Slow Build Process When Polyspace Traces the Build 1-20
Issue . 1-20
Cause . 1-20
Solution . 1-20

Checking if Polyspace Supports Windows Build Command 1-21
Issue . 1-21
Possible Cause . 1-21
Solution . 1-21

Create Project Using Visual Studio Information 1-23

iv Contents

Troubleshooting Project Creation from Visual Studio
Build . 1-27

Cannot Create Project from Visual Studio Build 1-27
Compilation Error After Creating Project from Visual Studio

Build . 1-27

Add Source Files and Include Folders 1-29
Add Sources and Includes . 1-29
Manage Include File Sequence . 1-29

Specify Analysis Options . 1-31
About Analysis Options . 1-31
Specify Options in User Interface . 1-32
Specify Options from DOS and UNIX Command Line 1-32
Specify Options from MATLAB Command Line 1-33

Save Analysis Options as Project Template 1-34

Organize Layout of Polyspace User Interface 1-38
Create Your Own Layout . 1-38
Save and Reset Layout . 1-39

Specify External Text Editor . 1-40

Change Default Font Size . 1-42

Define Custom Review Status . 1-43

Modeling Multitasking Code . 1-47
Example . 1-47
Limitations . 1-50

Set Up Multitasking Analysis Manually 1-52
Prerequisites . 1-52
Set Up Multitasking Analysis in User Interface 1-53
Set Up Multitasking Analysis at Command Line 1-53
Set Up Multitasking Analysis at MATLAB Command Line . 1-54

Annotate Code for Known Defects . 1-55
How to Add Annotations . 1-55
Syntax for Code Annotations . 1-55

v

Annotate Code for Rule Violations . 1-58
How to Add Annotations . 1-58
Syntax for Code Annotations . 1-59

Copy and Paste Annotations . 1-61

Modify Predefined Target Processor Attributes 1-63

Specify Generic Target Processors . 1-65
Define Generic Target . 1-65
Common Generic Targets . 1-66
View or Modify Existing Generic Targets 1-67
Delete Generic Target . 1-68

Compile Operating System-Dependent Code 1-69
My Target Application Runs on Solaris 1-69
My Target Application Runs on Vxworks 1-69
My Target Application Does Not Run on Linux, VxWorks, or

Solaris . 1-70

Address Alignment . 1-71

Ignore or Replace Keywords Before Compilation 1-72
Content of myTpl.pl file . 1-72
Perl Regular Expression Summary 1-73

Analyze Keil or IAR Dialects . 1-75

Supported C++ 2011 Extensions . 1-81

Gather Compilation Options Efficiently 1-85

Specify Constraints . 1-87
Create Constraint Template . 1-87
Update Existing Template . 1-89

Constraints . 1-90

Storage of Polyspace Preferences . 1-94

vi Contents

Coding Rule Sets and Concepts
2

Rule Checking . 2-2
Polyspace Coding Rule Checker . 2-2
Differences Between Bug Finder and Code Prover 2-2

Polyspace MISRA C 2004 and MISRA AC AGC Checkers . . . 2-4

Software Quality Objective Subsets (C:2004) 2-5
Rules in SQO-Subset1 . 2-5
Rules in SQO-Subset2 . 2-6

Software Quality Objective Subsets (AC AGC) 2-10
Rules in SQO-Subset1 . 2-10
Rules in SQO-Subset2 . 2-11

MISRA C:2004 and MISRA AC AGC Coding Rules 2-14
Supported MISRA C:2004 and MISRA AC AGC Rules 2-14
Unsupported MISRA C:2004 and MISRA AC AGC Rules . . . 2-50

Polyspace MISRA C:2012 Checker . 2-53

Software Quality Objective Subsets (C:2012) 2-54
Guidelines in SQO-Subset1 . 2-54
Guidelines in SQO-Subset2 . 2-55

Unsupported MISRA C:2012 Guidelines 2-59

Polyspace MISRA C++ Checker . 2-60

Software Quality Objective Subsets (C++) 2-61
SQO Subset 1 – Direct Impact on Selectivity 2-61
SQO Subset 2 – Indirect Impact on Selectivity 2-63

MISRA C++ Coding Rules . 2-68
Supported MISRA C++ Coding Rules 2-68
Unsupported MISRA C++ Rules . 2-89

Polyspace JSF C++ Checker . 2-95

vii

JSF C++ Coding Rules . 2-96
Supported JSF C++ Coding Rules . 2-96
Unsupported JSF++ Rules . 2-119

Check Coding Rules from the Polyspace
Environment

3
Activate Coding Rules Checker . 3-2

Select Specific MISRA or JSF Coding Rules 3-6

Create Custom Coding Rules . 3-9

Format of Custom Coding Rules File 3-11

Exclude Files From Analysis . 3-12

Allow Custom Pragma Directives . 3-13

Specify Boolean Types . 3-14

Find Coding Rule Violations . 3-15

Review Coding Rule Violations . 3-16

Filter and Group Coding Rule Violations 3-18
Filter Coding Rules . 3-18
Group Coding Rules . 3-18
Suppress Certain Rules from Display in One Click 3-18

Rules to Disable for Faster Analysis 3-21
MISRA C: 2004 and MISRA AC AGC 3-21
MISRA C: 2012 . 3-21

viii Contents

Find Bugs From the Polyspace Environment
4

Choose Specific Defects . 4-2

Run Local Analysis . 4-3

Run Remote Batch Analysis . 4-4

Monitor Analysis . 4-5

Specify Results Folder . 4-6

View Results in the Polyspace Environment
5

Open Results . 5-2
Open Results From Active Project . 5-2
Open Results File From File Browser 5-2

View Results Summary in Polyspace Metrics 5-4

Download Results From Polyspace Metrics 5-6

Filter and Group Results . 5-9
Filter Results . 5-9
Group Results . 5-10

Classification of Defects by Impact . 5-12
High Impact Defects . 5-12
Medium Impact Defects . 5-14
Low Impact Defects . 5-17

Limit Display of Defects . 5-20

Generate Reports . 5-22

Review and Fix Results . 5-24
Assign and Save Comments . 5-24

ix

Import Review Comments from Previous Analysis 5-25

Review Concurrency Defects . 5-27

Review Code Metrics . 5-30
Impose Limits on Metrics . 5-30
Comment and Justify Limit Violations 5-33

Navigate to Root Cause of Defect . 5-34
Navigate Code Sequence Causing Defect 5-34
Navigate to Identifier Definition . 5-35
Navigate to Identifier References . 5-35

Results Folder Contents . 5-37
Files in the Results Folder . 5-37

Windows Used to Review Results . 5-38
Dashboard . 5-38
Results Summary . 5-42
Source . 5-44
Result Details . 5-50

Bug Finder Defect Groups . 5-52
Concurrency . 5-52
Data flow . 5-53
Dynamic Memory . 5-53
Good Practice . 5-53
Numerical . 5-54
Object Oriented . 5-54
Programming . 5-54
Resource Management . 5-54
Static Memory . 5-55
Security . 5-55
Tainted data . 5-55

HIS Metrics . 5-57
Project . 5-57
File . 5-57
Function . 5-57

Common Weakness Enumeration from Bug Finder Defects 5-59
Common Weakness Enumeration . 5-59
Polyspace Bug Finder and CWE Compatibility 5-59

x Contents

Find CWE Identifiers from Defects . 5-61
View CWE Identifiers . 5-61
Filter CWE Identifiers . 5-61
Generate Report with CWE Identifiers 5-61

Mapping Between CWE Identifiers and Defects 5-63

Command-Line Analysis
6

Create Project Automatically at Command Line 6-2

Run Local Analysis from Command Line 6-4
Specify Sources and Analysis Options Directly 6-4
Specify Sources and Analysis Options in Text File 6-5
Create Options File from Build System 6-5

Run Remote Analysis at Command Line 6-6
Run Remote Analysis . 6-6
Manage Remote Analysis . 6-7
Download Results . 6-9

Create Project Automatically from MATLAB Command
Line . 6-10

Polyspace Bug Finder Analysis in Simulink
7

Embedded Coder Considerations . 7-2
Default Options . 7-2
Recommended Polyspace Bug Finder Options for Analyzing

Generated Code . 7-3
Hardware Mapping Between Simulink and Polyspace 7-4

TargetLink Considerations . 7-5
TargetLink Support . 7-5
Default Options . 7-5

xi

Lookup Tables . 7-6
Code Generation Options . 7-6

Generate and Analyze Code . 7-7

Main Generation for Model Analysis 7-14

Review Generated Code Results . 7-16

Troubleshoot Back to Model . 7-18
Back-to-Model Links Do Not Work 7-18
Your Model Already Uses Highlighting 7-18

Configure Model for Code Analysis
8

Configure Simulink Model . 8-2

Recommended Model Settings for Code Analysis 8-3

Check Simulink Model Settings . 8-6
Check Simulink Model Settings Using the Code Generation

Advisor . 8-6
Check Simulink Model Settings Before Analysis 8-7
Check Simulink Model Settings Automatically 8-9

Annotate Blocks for Known Results 8-12

Configure Code Analysis Options
9

Polyspace Configuration for Generated Code 9-2

Include Handwritten Code . 9-3

Configure Analysis Depth for Referenced Models 9-4

xii Contents

Check Coding Rules Compliance . 9-5

Configure Polyspace Analysis Options and Properties 9-7
Set Advanced Analysis Options . 9-7
Save a Polyspace Configuration File Template 9-8
Use a Custom Configuration File . 9-9
Remove Polyspace Options From Simulink Model 9-9

Set Custom Target Settings . 9-11

Set Up Remote Batch Analysis . 9-14

Manage Results . 9-15
Open Polyspace Results Automatically 9-15
Specify Location of Results . 9-16
Save Results to a Simulink Project 9-17

Specify Signal Ranges . 9-18
Specify Signal Range through Source Block Parameters . . . 9-18
Specify Signal Range through Base Workspace 9-20

Run Polyspace on Generated Code
10

Specify Type of Analysis to Perform 10-2

Run Analysis for Embedded Coder . 10-5

Run Analysis for TargetLink . 10-6

Monitor Progress . 10-7
Local Analyses . 10-7
Remote Batch Analyses . 10-7

xiii

Check Coding Rules from Eclipse
11

Activate Coding Rules Checker . 11-2

Select Specific MISRA or JSF Coding Rules 11-6

Create Custom Coding Rules File . 11-9

Contents of Custom Coding Rules File 11-11

Exclude Files From Analysis . 11-12

Allow Custom Pragma Directives . 11-13

Specify Boolean Types . 11-14

Find Coding Rule Violations . 11-15

Review Coding Rule Violations . 11-16

Filter and Group Coding Rule Violations 11-18
Filter Coding Rules . 11-18
Group Coding Rules . 11-18
Suppress Certain Rules from Display in One Click 11-18

Find Bugs from Eclipse
12

Run Analysis . 12-2

Customize Analysis Options . 12-3

xiv Contents

View Results in Eclipse
13

View Results . 13-2
View Results in Eclipse . 13-2
View Results in Polyspace Environment 13-2

Review and Fix Results . 13-3

Filter and Group Results . 13-5
Filter Results . 13-5
Group Results . 13-6

Understanding the Results Views . 13-8
Results Summary . 13-8
Result Details . 13-10

Check Coding Rules from Microsoft Visual Studio
14

Activate C++ Coding Rules Checker 14-2

Exclude Files From Analysis . 14-4

Find Bugs from Microsoft Visual Studio
15

Run Polyspace in Visual Studio . 15-2

Monitor Progress in Visual Studio . 15-5
Local Analysis . 15-5
Remote Analysis . 15-7

Customize Polyspace Options . 15-8

Configuration File and Default Options 15-9

xv

Bug Finding in Visual Studio . 15-10

Open Results from Microsoft Visual Studio
16

Open Results in Polyspace Environment 16-2

Troubleshooting in Polyspace Bug Finder
17

View Error Information When Verification Stops 17-2
View Error Information in User Interface 17-2
View Error Information in Log File 17-2

Troubleshoot Compilation and Linking Errors 17-4

Contact Technical Support . 17-5
Provide System Information . 17-5
Provide Information About the Issue 17-5

Header File Location Not Specified 17-7
Message . 17-7
Possible Cause . 17-7
Solution . 17-7

Polyspace Cannot Find the Server . 17-8
Message . 17-8
Possible Cause . 17-8
Solution . 17-8

Insufficient Memory During Report Generation 17-9
Message . 17-9
Possible Cause . 17-9
Solution . 17-9

xvi Contents

Errors From Disk Defragmentation and Antivirus
Software . 17-10

Message . 17-10
Possible Cause . 17-10
Solution . 17-10

Syntax Errors Due to Unknown Keywords 17-11
Message . 17-11
Code Used . 17-11
Cause . 17-11
Solution . 17-11

Undeclared Identifier . 17-12
Message . 17-12
Code Used . 17-12
Cause . 17-12
Solution . 17-12

Missing Identifiers with Keil or IAR Dialect 17-13
Message . 17-13
Possible Cause . 17-13
Solution . 17-13

Unknown Prototype . 17-14
Message . 17-14
Code Used . 17-14
Cause . 17-14
Solution . 17-14

Cannot Find Include File . 17-16
Messages . 17-16
Code Used . 17-16
Cause . 17-16
Solution . 17-16

#error Directive . 17-17
Message . 17-17
Code Used . 17-17
Cause . 17-17
Solution . 17-17

Object is Too Large . 17-18
Issue . 17-18

xvii

Message . 17-18
Code Used . 17-18
Solution . 17-18

Errors From Special Characters . 17-21
Workaround . 17-21

Initialization of Static Class Members (C++) 17-22

Double Declarations of Standard Template Library
Functions . 17-23

GNU Dialect . 17-24
Partial Support . 17-24
Syntactic Support Only . 17-25
Not Supported . 17-25
Examples . 17-25

ISO versus Default Dialects . 17-27

Visual Dialects . 17-29
Import Folder . 17-29
pragma Pack . 17-29

Eclipse Java Version Incompatible with Polyspace Plug-
in . 17-31

Issue . 17-31
Cause . 17-31
Solution . 17-31

1

Project Configuration

• “What Is a Project?” on page 1-3
• “What is a Project Template?” on page 1-4
• “Open Polyspace Bug Finder” on page 1-5
• “Create New Project” on page 1-6
• “Create Project Automatically” on page 1-7
• “Requirements for Project Creation from Build Systems” on page 1-10
• “Compiler Not Supported for Project Creation from Build Systems” on page 1-13
• “Slow Build Process When Polyspace Traces the Build” on page 1-20
• “Checking if Polyspace Supports Windows Build Command” on page 1-21
• “Create Project Using Visual Studio Information” on page 1-23
• “Troubleshooting Project Creation from Visual Studio Build” on page 1-27
• “Add Source Files and Include Folders” on page 1-29
• “Specify Analysis Options” on page 1-31
• “Save Analysis Options as Project Template” on page 1-34
• “Organize Layout of Polyspace User Interface” on page 1-38
• “Specify External Text Editor” on page 1-40
• “Change Default Font Size” on page 1-42
• “Define Custom Review Status” on page 1-43
• “Modeling Multitasking Code” on page 1-47
• “Set Up Multitasking Analysis Manually” on page 1-52
• “Annotate Code for Known Defects” on page 1-55
• “Annotate Code for Rule Violations” on page 1-58
• “Copy and Paste Annotations” on page 1-61
• “Modify Predefined Target Processor Attributes” on page 1-63
• “Specify Generic Target Processors” on page 1-65

1 Project Configuration

1-2

• “Compile Operating System-Dependent Code” on page 1-69
• “Address Alignment” on page 1-71
• “Ignore or Replace Keywords Before Compilation” on page 1-72
• “Analyze Keil or IAR Dialects” on page 1-75
• “Supported C++ 2011 Extensions” on page 1-81
• “Gather Compilation Options Efficiently” on page 1-85
• “Specify Constraints” on page 1-87
• “Constraints” on page 1-90
• “Storage of Polyspace Preferences” on page 1-94

 What Is a Project?

1-3

What Is a Project?

In Polyspace® software, a project is a named set of parameters for your software project's
source files. A project includes:

• Source files
• Include folders
• A configuration, specifying a set of analysis options

In the Polyspace interface, use the Project Browser and Configuration panes to create
and modify a project.

1 Project Configuration

1-4

What is a Project Template?

A Project Template is a predefined set of analysis options for a specific compilation
environment. When creating a new project, you have the option to:

• Use an existing template to automatically set analysis options for your compiler.

Polyspace software provides predefined templates for common compilers such as IAR,
Kiel, and VxWorks Aonix, Rational, and Greenhills. For additional templates,
see Polyspace Compiler Templates .

• Set analysis options manually. You can save your options to a custom template
and reuse them later. For more information, see “Save Analysis Options as Project
Template” on page 1-34.

http://www.mathworks.com/matlabcentral/fileexchange/35927-polyspace-compiler-templates

 Open Polyspace Bug Finder

1-5

Open Polyspace Bug Finder

After you install MATLAB® and Polyspace, you can open Polyspace Bug Finder™ from
the desktop shortcut created during installation. Other ways to open Polyspace are:

• via MATLAB.

• In the apps gallery, select Polyspace Bug Finder.
• In the Command Window, enter:

polyspaceBugFinder

• via the command-line.

• DOS: MATLAB Install\polyspace\bin\polyspace-bug-finder
• UNIX: MATLAB Install/polyspace/bin/polyspace-bug-finder

Where MATLAB Install is your MATLAB installation folder.

Polyspace Bug Finder can be opened simultaneously with Polyspace Code Prover™ or a
second instance of Polyspace Bug Finder. However, only one code analysis can be run at a
time.

If you try to run Polyspace processes from multiple windows, you will get a License
Error –4,0. To avoid this error, close any additional Polyspace windows before running
an analysis.

1 Project Configuration

1-6

Create New Project

This example shows how to create a new project in Polyspace Bug Finder. Before you
create a project, you must know:

• Location of source files
• Location of include files
• Location where analysis results will be stored

For the three locations, you will find it convenient to create three subfolders under a
common project folder. For instance, under the folder polyspace_project, you can
create three subfolders sources,includes and results.

1 Select File > New Project.
2 In the Project – Properties dialog box, enter the following information:

• Project name
• Location: Folder where you will store the project file with extension .psprj.

You can use this file to open an existing project.

The software assigns a default location to your project. You can change this
default on the Project and Results Folder tab in the Polyspace Preferences
dialog box.

• Project language
3 Add source files and include folders to your project.

• Navigate to the location where you stored your source files. Select the source files
for your project. Click Add Source Files.

• The software automatically adds the standard include files to your project. To use
custom include files, navigate to the folder containing your include files. Click
Add Include Folders.

4 Click Finish.

The new project opens in the Project Browser pane.
5 Save the project. Select File > Save or enter Ctrl+S.

To close the project at any time, in the Project Browser, right-click the project node
and select Close.

 Create Project Automatically

1-7

Create Project Automatically
If you use build automation scripts to build your source code, you can automatically setup
a Polyspace project from your scripts. The automatic project setup runs your automation
scripts to determine:

• Source files.
• Includes.
• Target & compiler options. For more information on these options, see:

• C Code: “Target & Compiler”
• C++ Code: “Target & Compiler”

1 Select File > New Project.
2 On the Project – Properties dialog box, after specifying the project name, location

and language, under Project configuration, select Create from build command.
3 On the next window, enter the following information:

Field Description

Specify command
used for building
your source files

If you use an IDE such as Visual Studio® or Eclipse™
to build your project, specify the full path to your IDE

executable or navigate to it using the button. For a
tutorial using Visual Studio, see “Create Project Using
Visual Studio Information” on page 1-23.

Example: "C:\Program Files (x86)\Microsoft
Visual Studio 10.0\Common7\IDE\VCExpress.exe"

If you use command-line tools to build your project, specify
the appropriate command.

Example:

• make -B -f makefileName or make -W
makefileName

• "mingw32-make.exe -B -f makefilename"

Specify working
directory for

Specify the folder from which you run your build automation
script.

1 Project Configuration

1-8

Field Description

running build
command

If you specify the full path to your executable in the previous
field, this field is redundant. Specify any folder.

Add advanced
configure options

Specify additional options for advanced tasks such as
incremental build. For the full list of options, see the -
options value argument for polyspaceConfigure.

4
Click .

• If you entered your build command, Polyspace runs the command and sets up a
project.

• If you entered the path to an executable, the executable runs. Build your source
code and close the executable. Polyspace traces your build and sets up a project.

For example, in Visual Studio 2010, use Tools > Rebuild Solution to build your
source code. Then close Visual Studio.

If there is a failure, see if your build command meets the requirements for automatic
project setup. In some cases, you can modify your build command to work around the
limitations. For more information, see “Requirements for Project Creation from Build
Systems” on page 1-10.

5 Click Finish.

The new project appears on the Project Browser pane. To close the project at any
time, in the Project Browser, right-click the project node and select Close.

6 If you updated your build command, you can recreate the Polyspace project from the
updated command. To recreate an existing project, on the Project Browser, right-
click the project name and select Update Project.

Note:

• In the Polyspace interface, it is possible that the created project will not show implicit
defines or includes. The configuration tool does include them. However, they are not
visible.

• By default, Polyspace assigns the latest dialect for your compiler. If you have
compilation errors in your project, check the dialect. If it does not apply to you, change
it to a more appropriate one.

 Create Project Automatically

1-9

• If your build process requires user interaction, you cannot run the build command
from the Polyspace user interface and do an automatic project setup.

Related Examples
• “Create Project Using Visual Studio Information” on page 1-23

More About
• “Compiler Not Supported for Project Creation from Build Systems” on page 1-13
• “Slow Build Process When Polyspace Traces the Build” on page 1-20
• “Checking if Polyspace Supports Windows Build Command” on page 1-21

1 Project Configuration

1-10

Requirements for Project Creation from Build Systems
For automatic project creation from build systems, your build commands or makefiles
must meet certain requirements.

For more information on automatic project creation, see:

• “Create Project Automatically” on page 1-7
• “Create Project Automatically at Command Line” on page 6-2
• “Create Project Automatically from MATLAB Command Line” on page 6-10

The requirements for your build command are as follows:

• Your compiler must be called locally.

If you use a compiler cache such as ccache or a distributed build system such as
distmake, the software cannot trace your build. You must deactivate them.

• Your compiler must perform a clean build.

If your compiler performs only an incremental build, use appropriate options to
build all your source files. For example, if you use gmake, append the -B or -W
makefileName option to force a clean build. For the list of options allowed with the
GNU® make, see make options.

• Your compiler configuration must be available to Polyspace. The compilers currently
supported include the following:

• Visual C++® compiler
• gcc

• clang

• MinGW compiler
• IAR compiler

If your compiler configuration is not available to Polyspace:

• Write a compiler configuration file for your compiler in a specific format. For
more information, see “Compiler Not Supported for Project Creation from Build
Systems” on page 1-13.

• Contact MathWorks Technical Support. For more information, see “Contact
Technical Support”.

https://www.gnu.org/software/make/manual/html_node/Options-Summary.html
http://www.mathworks.com/support/?s_tid=gn_supp

 Requirements for Project Creation from Build Systems

1-11

• In Linux®, only UNIX® shell (sh) commands must be used. If your build uses advanced
commands such as commands supported only by bash, tcsh or zsh, Polyspace cannot
trace your build.

In Windows®, only DOS commands must be used. If your build uses advanced
commands such as commands supported only by PowerShell or Cygwin™, Polyspace
cannot trace your build. To see if Polyspace supports your build command, run
the command from cmd.exe in Windows. For more information, see “Checking if
Polyspace Supports Windows Build Command” on page 1-21.

• Your build command must not use aliases.

The alias command is used in Linux to create an alternate name for commands. If
your build command uses those alternate names, Polyspace cannot recognize them.

• Your build command must be executable completely on the current machine and must
not require privileges of another user.

If your build uses sudo to change user privileges or ssh to remotely login to another
machine, Polyspace cannot trace your build.

• If your build command uses redirection with the > or | character, the redirection
occurs after Polyspace traces the command. Therefore, Polyspace does not handle the
redirection.

For example, if your command occurs as

command1 | command2

And you enter

polyspace-configure command1 | command2

When tracing the build, Polyspace traces the first command only.
• If your computer hibernates during the build process, Polyspace might not be able to

trace your build.

Note: Your environment variables are preserved when Polyspace traces your build
command.

See Also
polyspaceConfigure

1 Project Configuration

1-12

Related Examples
• “Create Project Automatically” on page 1-7

More About
• “Slow Build Process When Polyspace Traces the Build” on page 1-20

 Compiler Not Supported for Project Creation from Build Systems

1-13

Compiler Not Supported for Project Creation from Build Systems

Issue

Your compiler is not supported for automatic project creation from build commands.

For more information on automatic project creation, see:

• “Create Project Automatically” on page 1-7
• “Create Project Automatically at Command Line” on page 6-2
• “Create Project Automatically from MATLAB Command Line” on page 6-10

Cause

For automatic project creation from your build system, your compiler configuration
must be available to Polyspace. Polyspace provides a compiler configuration file only for
certain compilers.

For information on which compilers are supported, see “Requirements for Project
Creation from Build Systems” on page 1-10.

Solution

To enable automatic project creation for an unsupported compiler, you can write your
own compiler configuration file.

1 Copy one of the existing configuration files from matlabroot\polyspace
\configure\compiler_configuration\.

2 Save the file as my_compiler.xml. my_compiler can be any name that helps you
identify the file.

To edit the file, save it outside the installation folder. After you have finished
editing, you must copy the file back to matlabroot\polyspace\configure
\compiler_configuration\.

3 Edit the contents of the file to represent your compiler. Replace the entries between
the XML elements with appropriate content.

The following table lists the XML elements in the file with a description of what the
content within the element represents.

1 Project Configuration

1-14

XML Element Content Description Content Example
for GNU C
Compiler

<compiler_names><name> ...

</name><compiler_names>

Name of the compiler
executable. This executable
transforms your .c files
into object files. You can add
several binary names, each
in a separate <name>...</
name> element. The software
checks for each of the provided
names and uses the compiler
name for which it finds a
match.

You must not specify
the linker binary inside
the <name>...</name>
elements.

• gcc

• gpp

<include_options><opt> ...

</opt></include_options>

The option that you use with
your compiler to specify
include folders.

To specify options where the
argument immediately follows
the option, use an isPrefix
attribute for opt and set it to
true.

-I

<system_include_options>

<opt> ... </opt>

</system_include_options>

The option that you use with
your compiler to specify
system headers.

To specify options where the
argument immediately follows
the option, use an isPrefix
attribute for opt and set it to
true.

-isystem

 Compiler Not Supported for Project Creation from Build Systems

1-15

XML Element Content Description Content Example
for GNU C
Compiler

<preinclude_options><opt> ...

</opt></preinclude_options>

The option that you use
with your compiler to force
inclusion of a file in the
compiled object.

To specify options where the
argument immediately follows
the option, use an isPrefix
attribute for opt and set it to
true.

-include

<define_options><opt> ...

</opt></define_options>

The option that you use with
your compiler to predefine a
macro.

To specify options where the
argument immediately follows
the option, use an isPrefix
attribute for opt and set it to
true.

-D

<undefine_options><opt> ...

</opt></undefine_options>

The option that you use with
your compiler to undo any
previous definition of a macro.

To specify options where the
argument immediately follows
the option, use an isPrefix
attribute for opt and set it to
true.

-U

1 Project Configuration

1-16

XML Element Content Description Content Example
for GNU C
Compiler

<semantic_options><opt> ...

</opt></semantic_options>

The options that you use to
modify the compiler behavior.
These options specify the
language settings to which the
code must conform.

You can use the isPrefix
attribute to specify multiple
options that have the same
prefix and the numArgs
attribute to specify options
with multiple arguments. For
instance:

• Instead of

<opt>-m32</opt>

<opt>-m64</opt>

You can write <opt
isPrefix="true">-m</

opt>.
• Instead of

<opt>-std=c90</opt>

<opt>-std=c99</opt>

You can write <opt
numArgs="1">-std</

opt>. If your makefile uses
-std c90 instead of -
std=c90, this notation also
supports that usage.

• -ansi

• -std =C90

• -std =c++11

• -fun signed

-char

 Compiler Not Supported for Project Creation from Build Systems

1-17

XML Element Content Description Content Example
for GNU C
Compiler

<dialect> ... </dialect> The options that specify
the Polyspace dialect used
by your compiler. For the
complete list of dialects, on the
Configuration pane, select
Target & Compiler.

gnu4.7

<preprocess_options_list>

<opt> ... </opt>

</preprocess_options_list>

The options that specify how
your compiler generates a
preprocessed file.

You can use the macro
$(OUTPUT_FILE) if your
compiler does not allow
sending the preprocessed
file to the standard output.
Instead it defines the
preprocessed file internally.

-E

For an
example of the
$(OUTPUT_FILE)

macro, see the
existing compiler
configuration file
cl2000.xml.

1 Project Configuration

1-18

XML Element Content Description Content Example
for GNU C
Compiler

<preprocessed_output_file> ... </

preprocessed_output_file>

The name of file where the
preprocessed output is stored.

You can use the following
macros when the name of the
preprocessed output file is
adapted from the source file:

• $(SOURCE_FILE): Source
file name

• $(SOURCE_FILE_EXT):
Source file extension

• $(SOURCE_FILE_NO_EXT):
Source file name without
extension

For instance, use
$(SOURCE_FILE_NO_EXT).pre

when the preprocessor file
name has the same name
as the source file, but with
extension .pre.

For an example
of this element,
see the existing
compiler
configuration file
xc8.xml.

<src_extensions><ext> ...

</ext></src_extensions>

The file extensions for source
files.

• c

• cpp

• c++

<obj_extensions><ext> ...

</ext></obj_extensions>

The file extensions for object
files.

<precompiled_header_extensions> ...

</precompiled_header_extensions>

The file extensions for
precompiled headers (if
available).

 Compiler Not Supported for Project Creation from Build Systems

1-19

XML Element Content Description Content Example
for GNU C
Compiler

<polyspace_c_extra_options_list>

<opt> ... </opt>

</polyspace_c_extra_options_list>

Additional options that will
be added to your project
configuration

To avoid
compilation
errors due to non-
ANSI® extension
keywords, enter
-D keyword.
For more
information, see
“Preprocessor
definitions (C/C+
+)”.

<polyspace_cpp_extra_options_list>

<opt> ... </opt>

</polyspace_cpp_extra_options_list>

Additional options that will
be added to your C++ project
configuration

To avoid
compilation
errors due to non-
ANSI extension
keywords, enter
-D keyword.
For more
information, see
“Preprocessor
definitions (C/C+
+)”.

4 After saving the edited XML file to matlabroot\polyspace\configure
\compiler_configuration\, create a project automatically using your build
command.

Tip To quickly see if your compiler configuration file works, run the automatic
project setup on a sample build that does not take much time to complete. After you
have set up a project successfully with your compiler configuration file, you can use
this file for larger builds.

1 Project Configuration

1-20

Slow Build Process When Polyspace Traces the Build

Issue

In some cases, your build process can run slower when Polyspace traces the build.

Cause

Polyspace caches information in files stored in the system temporary folder, such as C:
\Users\User_Name\AppData\Local\Temp, in Windows. Your build can take a long
time to perform read/write operations to this folder. Therefore, the overall build process
is slow.

Solution

You can work around the slow build process by changing the location where Polyspace
stores cache information. For instance, you can use a cache path local to the drive from
which you run build tracing. To create and use a local folder ps_cache for storing cache
information, use the advanced option -cache-path ./ps_cache.

• If you trace your build from the Polyspace user interface, enter this flag in the field
Add advanced configure options. For more information, see “Create Project
Automatically” on page 1-7.

• If you trace your build from the DOS, UNIX or MATLAB command line, use this flag
with the polyspace-configure command or polyspaceConfigure function.

 Checking if Polyspace Supports Windows Build Command

1-21

Checking if Polyspace Supports Windows Build Command

Issue

Your build command executes successfully in a Windows console application other than
cmd.exe. However, when Polyspace traces the build, the command fails.

For instance, your build command executes successfully from the Cygwin shell. However,
when Polyspace traces the build, the build command throws an error.

For more information on automatic project creation, see:

• “Create Project Automatically” on page 1-7
• “Create Project Automatically at Command Line” on page 6-2
• “Create Project Automatically from MATLAB Command Line” on page 6-10

Possible Cause

When you launch a Windows console application, your environment variables are
appropriately set. Alternate Windows console applications such as the Cygwin shell can
set your environment differently from cmd.exe.

Polyspace attempts to trace your build with the assumption that your commands run
successfully in cmd.exe. Therefore, even if your build command runs successfully in the
alternate console application, when Polyspace traces the build, the command fails.

Solution

Make sure that your build command executes successfully in the cmd.exe interface. For
instance, before you trace a build command that executes successfully in the Cygwin
shell, do one of the following:

• Launch the Cygwin shell from cmd.exe and then run your build command. For
instance, enter the following command at the DOS command line:

cmd.exe /C C:\cygwin64\bin\bash.exe -c make

• Find the full path to your build executable and then run this executable from
cmd.exe.

1 Project Configuration

1-22

1 Open the Cygwin shell. Enter the following:

which make

The output of this command shows the full path to your executable.
2 Using the above output, run the executable from cmd.exe. For instance, enter

the following command at the DOS command line:

cmd.exe /C path_to_executable

path_to_executable is the full path to the executable that you found in the
previous step. For instance, C:\cygwin64\bin\make.exe.

If the steps do not execute successfully, Polyspace cannot trace your build.

 Create Project Using Visual Studio Information

1-23

Create Project Using Visual Studio Information

To create a Polyspace project, you can trace your Visual Studio build. For Polyspace to
trace your Visual Studio build, you must install both x86 and x64 versions of the Visual
C++ Redistributable for Visual Studio 2012 from the Microsoft website.

1 In the Polyspace interface, select File > New Project.
2 In the Project – Properties window, enter your project information.

a Choose C++ as Project Language.
b Under Project Configuration, select Create from build command and click

Next.

http://www.microsoft.com/en-us/download/details.aspx?id=30679

1 Project Configuration

1-24

3 In the field Specify command used for building your source files, enter the
full path to the Visual Studio executable. For instance, "C:\Program Files
(x86)\Microsoft Visual Studio 10.0\Common7\IDE\VCExpress.exe".

 Create Project Using Visual Studio Information

1-25

4 In the field Specify working directory for running build command, enter C:\.

Click .

This action opens the Visual Studio environment.
5 In the Visual Studio environment, create and build a Visual Studio project.

If you already have a Visual Studio project, open the existing project and build a
clean solution. To build a clean solution in Visual Studio 2012, select BUILD >
Rebuild Solution.

6 After the project builds, close Visual Studio.

Polyspace traces your Visual Studio build and creates a Polyspace project.

The Polyspace project contains the source files from your Visual Studio build and the
relevant Target & Compiler options.

7 If you update your Visual Studio project, to update the corresponding Polyspace
project, on the Project Browser, right-click the project name and select Update
Project.

1 Project Configuration

1-26

More About
• “Troubleshooting Project Creation from Visual Studio Build” on page 1-27

 Troubleshooting Project Creation from Visual Studio Build

1-27

Troubleshooting Project Creation from Visual Studio Build

In this section...

“Cannot Create Project from Visual Studio Build” on page 1-27
“Compilation Error After Creating Project from Visual Studio Build” on page 1-27

Cannot Create Project from Visual Studio Build

If you are trying to import a Visual Studio 2010 or Visual Studio 2012 project and
polyspace-configure does not work properly, do the following:

1 Stop the MSBuild.exe process.
2 Set the environment variable MSBUILDDISABLENODEREUSE to 1.
3 Specify MSBuild.exe with the/nodereuse:false option.
4 Restart the Polyspace configuration tool:

polyspace-configure.exe -lang cpp <MSVS path>/msbuild sample.sln

Compilation Error After Creating Project from Visual Studio Build

Issue

After you automatically set up your project from a Visual Studio 2010 build, you face
compilation errors.

Possible Cause

By default, Polyspace assigns the latest dialect visual11.0 to your project. This
assignment can cause compilation errors. For more information on the Dialect option,
see “Dialect (C++)”.

Solution

To avoid the errors, do one of the following:

• After automatic project setup:

1 Open the project in the user interface. On the Configuration pane, select
Target & Compiler.

1 Project Configuration

1-28

2 Check the Dialect. If it is set to visual11.0, change it to visual10.

Note: If you are creating an options file from your Visual Studio 2010 build, check the
-dialect argument. If it is set to visual11.0, change it to visual10.

• Before automatic project setup:

1 Open the file cl.xml in matlabroot\polyspace\configure
\compiler_configuration\ where matlabroot is your MATLAB installation
folder such as C:\Program Files\R2015a.

2 Change the line

<dialect>visual11.0</dialect>

to

<dialect>visual10</dialect>

3 Add the following lines:

<polyspace_cpp_extra_options_list>

<opt>-OS-target Visual</opt>

</polyspace_cpp_extra_options_list>

4 Create your project or options file. The dialect is already assigned to visual10.

 Add Source Files and Include Folders

1-29

Add Source Files and Include Folders

This example shows how to add source files and include folders to an existing project.

In this section...

“Add Sources and Includes” on page 1-29
“Manage Include File Sequence” on page 1-29

Add Sources and Includes

1 In the Project Browser, right-click your project or the Source or Include folder in
your project.

2 Select Add Source.
3 Add source files to your project.

• Navigate to the location where you stored your source files. Select each source
file. Click Add Source Files.

• To add all files in a folder and its subfolders, select the option Add recursively.
Select the folder. Click Add Source Files.

4 Add include folders to your project. The software adds standard include files to your
project. However, you must explicitly add folders containing your custom include
files.

• Navigate to the folder containing your include files. Select the folder and click
Add Include Folders.

• If you do not want to add subfolders of the folder, clear Add recursively. Select
the folder and click Add Include Folders.

5 Click Finish.

Manage Include File Sequence

You can change the order of include folders to manage the sequence in which include files
are compiled.

When multiple include files by the same name exist in different folders, you might want
to change the order of include folders instead of reorganizing the contents of your folders.

1 Project Configuration

1-30

For a particular include file name, the software includes the file in the first include folder
under Project_Name > Include.

In the following figure, Folder_1 and Folder_2 contain the same include file
include.h. If your source code includes this header file, during compilation, Folder_2/
include.h is included in preference to Folder_1/include.h.

To change the order of include folders:

1 In the Project Browser, expand the Include folder.
2 Select the include folder that you want to move.
3

To move the folder, click either or on the Project Browser toolbar.

Related Examples
• “Specify Results Folder” on page 4-6
• “Create New Project” on page 1-6

 Specify Analysis Options

1-31

Specify Analysis Options

In this section...

“About Analysis Options” on page 1-31
“Specify Options in User Interface” on page 1-32
“Specify Options from DOS and UNIX Command Line” on page 1-32
“Specify Options from MATLAB Command Line” on page 1-33

About Analysis Options

You can either use the default analysis options used by the software or change them to
your requirements.

At the command line or using the command-line names in the Advanced options pane
in the user interface, you can specify analysis options multiple times. This flexibility
allows you to customize pre-made configurations without having to remove options.

If you specify an option multiple times, only the last setting is used. For example, if your
configuration is:

-lang c

-prog test_bf_cp

-verif-version 1.0

-author username

-sources-list-file sources.txt

-OS-target no-predefined-OS

-target i386

-dialect none

-misra-cpp required-rules

-target powerpc

Polyspace uses the last target setting, powerpc, and ignores the other target specified,
i386.

Similarly, in the user interface, you can specify the target as c18 on the Target and
Compiler pane and in Advanced options enter -target i386. These two targets
count as multiple analysis option specifications. Polyspace uses the target specified in the
Advanced options dialog box, i386.

1 Project Configuration

1-32

Specify Options in User Interface

To specify analysis options, use the different nodes on the Configuration pane.

For instance:

• To specify the target processor, select Target & Compiler in the Configuration
tree view. Select your processor from the Target processor type drop-down list.

• To check for violation of MISRA C® rules, select Coding Rules. Check the Check
MISRA C Rules box. To check for a subset of rules, select an option from the drop-
down list.

Specify Options from DOS and UNIX Command Line

At the DOS or UNIX command-line, append analysis options to the polyspace-bug-
finder-nodesktop command. For instance:

• To specify the target processor, use the -target option. For instance, to specify the
m68k processor for your source file file.c, use the command:

polyspace-bug-finder-nodesktop -sources "file.c" -lang c -target m68k

• To check for violation of MISRA C rules, use the -misra2 option. For instance,
to check for only the required MISRA C rules on your source file file.c, use the
command:

 Specify Analysis Options

1-33

polyspace-bug-finder-nodesktop -sources "file.c" -misra2 required-rules

Specify Options from MATLAB Command Line

At the MATLAB command-line, enter analysis options and their values as string
arguments to the polyspaceBugFinder function. For instance:

• To specify the target processor, use the -target option. For instance, to specify the
m68k processor for your source file file.c, enter:

polyspaceBugFinder('-sources','file.c','-lang','c','-target','m68k')

• To check for violation of MISRA C rules, use the -misra2 option. For instance, to
check for only the required MISRA C rules on your source file file.c, enter:

polyspaceBugFinder('-sources','file.c','-misra2','required-rules')

See Also
polyspaceBugFinder

Related Examples
• “Save Analysis Options as Project Template” on page 1-34

More About
• “Analysis Options for C”
• “Analysis Options for C++”

1 Project Configuration

1-34

Save Analysis Options as Project Template

This example shows how to save your analysis options for use in other projects. Once
you have configured analysis options for a project, you can save the configuration as
a Project Template. You can use this saved configuration to automatically set up
analysis options for other projects. You can also share the template with other users and
enforce consistent usage of Polyspace Bug Finder in your organization.

• To create a Project Template from an open project:

1 Right-click the configuration that you want to use, and then select Save As
Template.

2 Enter a description for the template, then click Proceed. Save your Template
file.

• When you create a new project, to use a saved template:

1 Under Project configuration, check the Use template box. Click Next.

 Save Analysis Options as Project Template

1-35

1 Project Configuration

1-36

2
Select . Navigate to the template that you saved
earlier, and then click Open. The new template appears in the Custom
templates folder on the Templates browser. Select the template for use.

Related Examples
• “Specify Analysis Options” on page 1-31

More About
• “Analysis Options for C”

 Save Analysis Options as Project Template

1-37

• “Analysis Options for C++”

1 Project Configuration

1-38

Organize Layout of Polyspace User Interface

The Polyspace user interface has a default set of panes. For instance, in the default
layout:

• The Project Browser and Results Summary panes appear on the left.
• The Configuration pane appears on the top right of the user interface.

You can create and save your own layout of panes. If the current layout of the user
interface does not meet your requirements, you can use a saved layout.

You can also change to the default layout of the Polyspace user interface. Select Window
> Reset Layout To > Default Layout.

In this section...

“Create Your Own Layout” on page 1-38
“Save and Reset Layout” on page 1-39

Create Your Own Layout

To create your own layout, you can close some of the panes, open some panes that are not
visible by default, and move existing panes to new locations.

To open a closed pane, select Window > Show/Hide View > pane_name.

To move a pane to another location:

1 Float the pane in one of three ways:

• Click and drag the blue bar on the top of the pane to float all tabs in that pane.

For instance, if Project Browser and Results Summary are tabbed on the
same pane, this action floats the pane together with its tabs.

• Click and drag the tab at the bottom of the pane to float only that tab.

For instance, if Project Browser and Results Summary are tabbed on the
same pane, dragging out Project Browser creates a pane with only Project
Browser on it and floats this new pane.

• Click on the top right of the pane to float all tabs in that pane.

 Organize Layout of Polyspace User Interface

1-39

2 Drag the pane to another location until it snaps into a new position.

If you want to place the pane in its original location, click in the upper-right
corner of the floating pane.

For instance, you can create a layout exclusively for reviewing results.

Save and Reset Layout

After you have created your own layout, you can save it. You can change from another
layout to this saved layout.

• To save your layout, select Window > Save Current Layout As. Enter a name for
this layout.

• To use a saved layout, select Window > Reset Layout To > layout_name.
• To remove a saved layout from the Reset Layout To list, select Window > Remove

Custom Layout > layout_name.

1 Project Configuration

1-40

Specify External Text Editor

This example shows how to change the default text editor for opening source files from
the Polyspace interface. By default, if you open your source file from the user interface, it
opens on a Code Editor tab. If you prefer editing your source files in an external editor,
you can change this default behavior.

1 Select Tools > Preferences.
2 On the Polyspace Preferences dialog box, select the Editors tab.
3 From the Text editor drop-down list, select External.
4 In the Text editor field, specify the path to your text editor. For example:

C:\Program Files\Windows NT\Accessories\wordpad.exe

5 To make sure that your source code opens at the correct line and column in your
text editor, specify command-line arguments for the editor using Polyspace macros,
$FILE, $LINE and $COLUMN. Once you specify the arguments, when you right-click
a check on the Results Summary pane and select Open Editor, your source code
opens at the location of the check.

Polyspace has already specified the command-line arguments for the following
editors:

• Emacs

• Notepad++ — Windows only
• UltraEdit

• VisualStudio

• WordPad — Windows only
• gVim

If you are using one of these editors, select it from the Arguments drop-down list. If
you are using another text editor, select Custom from the drop-down list, and enter
the command-line options in the field provided.

6 To revert back to the built-in editor, on the Editors tab, from the Text editor drop-
down list, select Built In.

For console-based text editors, you must create a terminal. For example, to specify vi:

1 In the Text Editor field, enter /usr/bin/xterm.

 Specify External Text Editor

1-41

2 From the Arguments drop-down list, select Custom.
3 In the field to the right, enter -e /usr/bin/vi $FILE.

1 Project Configuration

1-42

Change Default Font Size

This example shows how to change the default font size in the Polyspace user interface.

1 Select Tools > Preferences.
2 On the Miscellaneous tab:

• To increase the font size of labels on the user interface, select a value for GUI
font size.

For example, to increase the default size by 1 point, select +1.
• To increase the font size of the code on the Source pane and the Code Editor

pane, select a value for Source code font size.
3 Click OK.

When you restart Polyspace, you see the increased font size.

 Define Custom Review Status

1-43

Define Custom Review Status

This example shows how to customize the statuses you assign on the Results Summary
pane.

Define Custom Status

1 Select Tools > Preferences.
2 Select the Review Statuses tab.
3 Enter your new status at the bottom of the dialog box, then click Add.

1 Project Configuration

1-44

The new status appears in the Status list.
4 Click OK to save your changes and close the dialog box.

When reviewing checks, you can select the new status from the Status drop-down list on
the Results Summary pane.

 Define Custom Review Status

1-45

Add Justification to Existing Status

By default, a check is automatically justified if you assign the status, Justified or
No action planned. However, you can change this default setting so that a check is
justified when you assign one of the other existing statuses.

To add justification to existing status Improve:

1 Select Tools > Preferences.
2 Select the Review Statuses tab. For the Improve status, select the check box in the

Justify column. Click OK.

1 Project Configuration

1-46

If you assign the Improve status to a check on the Results Summary pane, the
check gets automatically justified.

 Modeling Multitasking Code

1-47

Modeling Multitasking Code

In this section...

“Example” on page 1-47
“Limitations” on page 1-50

Polyspace Bug Finder can analyze your multitasking code for “Concurrency Defects”,
such as locking and data races, if Bug Finder knows how your concurrency model is set
up. In some situations, Polyspace can detect the concurrency model automatically.

If you use POSIX® or VxWorks®, these concurrency primitives are supported:

• pthread_create

• pthread_mutex_lock

• pthread_mutex_unlock

• taskSpawn

• semTake

• semGive

Polyspace uses these functions to model the thread creation, and opening and closing
critical sections.

If you use a different library or different multitasking functions, you must manually
model your multitasking threads by using configuration options. See “Set Up
Multitasking Analysis Manually” on page 1-52.

Note: There are some aspects of multitasking that Polyspace cannot model. See
“Limitations” on page 1-50.

Example

The following multitasking code models five philosophers sharing five forks.

#include "pthread.h"

#include <stdio.h>

pthread_mutex_t forks[4];

1 Project Configuration

1-48

void* philo1(void* args) {

 while(1) {

 printf("Philosopher 1 is thinking\n");

 sleep(1);

 pthread_mutex_lock(&forks[0]);

 printf("Philosopher 1 takes left fork\n");

 pthread_mutex_lock(&forks[1]);

 printf("Philosopher 1 takes right fork\n");

 printf("Philosopher 1 is eating\n");

 sleep(1);

 pthread_mutex_unlock(&forks[1]);

 printf("Philosopher 1 puts down right fork\n");

 pthread_mutex_unlock(&forks[0]);

 printf("Philosopher 1 puts down left fork\n");

 }

 return NULL;

}

void* philo2(void* args) {

 while(1) {

 printf("Philosopher 2 is thinking\n");

 sleep(1);

 pthread_mutex_lock(&forks[1]);

 printf("Philosopher 2 takes left fork\n");

 pthread_mutex_lock(&forks[2]);

 printf("Philosopher 2 takes right fork\n");

 printf("Philosopher 2 is eating\n");

 sleep(1);

 pthread_mutex_unlock(&forks[2]);

 printf("Philosopher 2 puts down right fork\n");

 pthread_mutex_unlock(&forks[1]);

 printf("Philosopher 2 puts down left fork\n");

 }

 return NULL;

}

void* philo3(void* args) {

 while(1) {

 printf("Philosopher 3 is thinking\n");

 sleep(1);

 pthread_mutex_lock(&forks[2]);

 printf("Philosopher 3 takes left fork\n");

 pthread_mutex_lock(&forks[3]);

 printf("Philosopher 3 takes right fork\n");

 Modeling Multitasking Code

1-49

 printf("Philosopher 3 is eating\n");

 sleep(1);

 pthread_mutex_unlock(&forks[3]);

 printf("Philosopher 3 puts down right fork\n");

 pthread_mutex_unlock(&forks[2]);

 printf("Philosopher 3 puts down left fork\n");

 }

 return NULL;

}

void* philo4(void* args) {

 while(1) {

 printf("Philosopher 4 is thinking\n");

 sleep(1);

 pthread_mutex_lock(&forks[3]);

 printf("Philosopher 4 takes left fork\n");

 pthread_mutex_lock(&forks[4]);

 printf("Philosopher 4 takes right fork\n");

 printf("Philosopher 4 is eating\n");

 sleep(1);

 pthread_mutex_unlock(&forks[4]);

 printf("Philosopher 4 puts down right fork\n");

 pthread_mutex_unlock(&forks[3]);

 printf("Philosopher 4 puts down left fork\n");

 }

 return NULL;

}

void* philo5(void* args) {

 while(1) {

 printf("Philosopher 5 is thinking\n");

 sleep(1);

 pthread_mutex_lock(&forks[4]);

 printf("Philosopher 5 takes left fork\n");

 pthread_mutex_lock(&forks[0]);

 printf("Philosopher 5 takes right fork\n");

 printf("Philosopher 5 is eating\n");

 sleep(1);

 pthread_mutex_unlock(&forks[0]);

 printf("Philosopher 5 puts down right fork\n");

 pthread_mutex_unlock(&forks[4]);

 printf("Philosopher 5 puts down left fork\n");

 }

 return NULL;

1 Project Configuration

1-50

}

int main(void)

{

 pthread_t ph[5];

 pthread_create(&ph[0],NULL,philo1,NULL);

 pthread_create(&ph[1],NULL,philo2,NULL);

 pthread_create(&ph[2],NULL,philo3,NULL);

 pthread_create(&ph[3],NULL,philo4,NULL);

 pthread_create(&ph[4],NULL,philo5,NULL);

 pthread_join(ph[0],NULL);

 pthread_join(ph[1],NULL);

 pthread_join(ph[2],NULL);

 pthread_join(ph[3],NULL);

 pthread_join(ph[4],NULL);

 return 1;

}

Each philosopher needs two forks to eat, a right and a left fork. The functions philo1,
philo2, philo3, philo4, and philo5 represent the philosophers. Each function
requires two pthread_mutex_t resources, representing the two forks required to eat.
All five functions run at the same time in five concurrent threads.

However, a deadlock occurs in this example. When each philosopher picks up their first
fork (each thread locks one pthread_mutex_t resource), all the forks are being used.
So, the philosophers (threads) wait for their second fork (second pthread_mutex_t
resource) to become available. However, all the forks (resources) are being held by the
waiting philosophers (threads), causing a deadlock.

Without additional configuration options, Polyspace Bug Finder detects that your
program performs multitasking, and that a deadlock defect occurs.

To run this example in Polyspace Bug Finder:

1 Copy this code into a .c file.
2 Create a Polyspace Bug Finder project with that .c file.
3 Run the analysis.

Limitations

The multitasking model that this option creates does not follow the exact semantics of
POSIX or VxWorks. Polyspace cannot model:

 Modeling Multitasking Code

1-51

• Thread priorities and attributes — Ignored by Polyspace.
• Recursive semaphores.
• Unbounded thread identifiers, such as extern pthread_t ids[] — Warning.
• Calls to concurrency primitive through high-order calls — Warning.
• Aliases on thread identifiers — Polyspace over-approximates when the alias is used.
• Termination of threads — Polyspace ignores pthread_join, and replaces

pthread_exit by a standard exit.

See Also
“Disable automatic concurrency detection (C/C++)” | “Configure multitasking manually
(C/C++)” | “Entry points (C/C++)” | “Critical section details (C/C++)” | “Temporally
exclusive tasks (C/C++)” | “Find defects (C/C++)”

Related Examples
• “Review Concurrency Defects” on page 5-27
• “Set Up Multitasking Analysis Manually” on page 1-52

More About
• “Concurrency” on page 5-52

1 Project Configuration

1-52

Set Up Multitasking Analysis Manually

In this section...

“Prerequisites” on page 1-52
“Set Up Multitasking Analysis in User Interface” on page 1-53
“Set Up Multitasking Analysis at Command Line” on page 1-53
“Set Up Multitasking Analysis at MATLAB Command Line” on page 1-54

This example shows how to prepare for an analysis of multitasking code. Polyspace Bug
Finder can check if the protection mechanisms for your multitasking model are well
designed.

Polyspace Bug Finder automatically sets up the multitasking configuration for some
types of multitasking functions. For information about the supported concurrency
functions, see “Modeling Multitasking Code” on page 1-47.

If your code has functions that are intended for concurrent execution, but that cannot be
detected automatically, you must specify them before analysis. If these functions operate
on a common variable, you must also specify protection mechanisms for those operations.

Prerequisites

For this example, save the following code in a file multi.c:

int a;

begin_critical_section();

end_critical_section();

void performTaskCycle(void) {

 begin_critical_section();

 a++;

 end_critical_section();

}

void task1(void) {

 while(1) {

 performTaskCycle();

 }

}

 Set Up Multitasking Analysis Manually

1-53

void task2(void) {

 while(1) {

 performTaskCycle();

 }

}

void task3() {

 a=0;

}

Set Up Multitasking Analysis in User Interface

1 Specify your entry points and protection mechanisms.

a On the Configuration pane, select the Multitasking node.
b Select Configure multitasking manually.
c For Entry points, specify task1, task2, and task3, each on its own line.
d For Critical section details, specify begin_critical_section as Starting

procedure and end_critical_section as Ending procedure.
e For Temporally exclusive tasks, specify task1 task3 and task2 task3,

each on its own line.
2 Specify the concurrency defects that you want Polyspace Bug Finder to detect. For

more information, see “Concurrency Defects”.

a On the Configuration pane, select the Bug Finder Analysis node.
b From the Find defects list, select custom.
c Under the Concurrency node, select Data race and Deadlock.

Set Up Multitasking Analysis at Command Line

At the DOS or UNIX command prompt, specify options with the polyspace-bug-
finder-nodesktop command.

polyspace-bug-finder-nodesktop -sources multi.c

 -entry-points task1,task2,task3

 -critical-section-begin begin_critical_section:cs1

 -critical-section-end end_critical_section:cs1

 -temporal-exclusions-file tasklist.txt

1 Project Configuration

1-54

 -checkers data_race,deadlock

Set Up Multitasking Analysis at MATLAB Command Line

At the DOS or UNIX command prompt, specify options with the polyspaceBugFinder
function.

polyspaceBugFinder('-sources','multi.c',...

 '-entry-points','task1,task2,task3',...

 '-critical-section-begin','begin_critical_section:cs1',...

 '-critical-section-end','end_critical_section:cs1',...

 '-temporal-exclusions-file','tasklist.txt',...

 '-checkers','data_race,deadlock')

See Also
“Disable automatic concurrency detection (C/C++)” | “Configure multitasking manually
(C/C++)” | “Entry points (C/C++)” | “Critical section details (C/C++)” | “Temporally
exclusive tasks (C/C++)” | “Find defects (C/C++)”

Related Examples
• “Review Concurrency Defects” on page 5-27

More About
• “Concurrency” on page 5-52
• “Modeling Multitasking Code” on page 1-47

 Annotate Code for Known Defects

1-55

Annotate Code for Known Defects

How to Add Annotations

You can place annotations in your code that inform Polyspace software of known or
acceptable defects. Through the use of these annotations, you can:

• Identify results from previous analyses.
• Categorize reviewed results.
• Highlight defects that are not significant.

You can add annotations in one of the following ways:

• When you are reviewing results in the Polyspace user interface, you can:

1 Enter a Severity, Status and Comment for each defect on the Results
Summary or Results Details pane.

2 Copy the information you entered and paste it in your source code in a syntax
that Polyspace can read later. For more information, see “Copy and Paste
Annotations” on page 1-61.

• You can directly open your source file in a text editor and enter comments in a
syntax that Polyspace can read later. For more information, see “Syntax for Code
Annotations” on page 1-55.

After you have placed the annotations in your code:

• Polyspace populates the Status, Severity and Comment fields for the defect.
• You or another reviewer can avoid reviewing the defect. You can either ignore the

known defects or filter them from the Results Summary pane. For more information
on filtering, see “Filter and Group Results” on page 5-9.

Syntax for Code Annotations

Polyspace applies the annotations, which are case-insensitive, to the first non-commented
line of C code that follows the annotation.

To apply annotations to a single line of code, use the following syntax:

/* polyspace<Defect:Kind1[,Kind2] : [Severity] : [Status] >

[Additional comments] */

1 Project Configuration

1-56

To apply annotations to a section of code, use the following syntax:

/* polyspace:begin<Defect:Kind1[,Kind1] : [Severity] : [Status] >

[Additional text] */

... Code section ...

/* polyspace:end<Defect:Kind1[,Kind1] : [Severity] : [Status] > */

If you run Polyspace Code Prover on the code, this code annotation is ignored.

Square brackets [] indicate optional information.

Replace Replace with

Kind1,Kind2,... Specific defect abbreviations such as MEM_LEAK, FREED_PTR,
etc.

If you want the comment to apply to all defects on the
following line, specify ALL.

Severity • Unset

• High

• Medium

• Low

• Not a defect

Status Action for correcting the defect in your code. Possible values
are:

• Fix

• Improve

• Investigate

• Justified

• No action planned

• Other

Additional text Additional comments.

Syntax Examples:

Defect:

 Annotate Code for Known Defects

1-57

polyspace<Defect:USELESS_WRITE : Low : No Action Planned > Known issue

1 Project Configuration

1-58

Annotate Code for Rule Violations

How to Add Annotations

You can place annotations in your code that inform Polyspace software of known or
acceptable coding rule violations. Through the use of these annotations, you can:

• Identify results from previous analyses.
• Categorize reviewed results.
• Highlight rule violations that are not significant.

Note: Source code annotations do not apply to code comments. Therefore, the following
coding rules cannot be annotated:

• MISRA-C Rules 2.2 and 2.3

• MISRA-C++ Rule 2-7-1
• JSF++ Rules 127 and 133

You can add annotations in one of the following ways:

• When you are reviewing results in the Polyspace user interface, you can:

1 Enter a Severity, Status and Comment for each coding-rule violation on the
Results Summary pane.

2 Copy the information you entered and paste it in your source code in a syntax
that Polyspace can read later. For more information, see “Copy and Paste
Annotations” on page 1-61.

• You can directly open your source file in a text editor and enter comments in a
syntax that Polyspace can read later. For more information, see “Syntax for Code
Annotations” on page 1-59.

After you have placed the annotations in your code:

• Polyspace populates the Status, Severity and Comment fields for the coding-rule
violation.

• You or another reviewer can avoid reviewing the rule violation. You can either ignore
the known rule violations or filter them from the Results Summary pane. For

 Annotate Code for Rule Violations

1-59

more information on filtering, see “Filter and Group Coding Rule Violations” on page
3-18.

Syntax for Code Annotations

Polyspace applies the annotations, which are case-insensitive, to the first non-commented
line of C code that follows the annotation.

To apply annotations to a single line of code, use the following syntax:

/* polyspace<Rule_set:Rule1[,Rule2] : [Severity] : [Status] >

[Additional comments] */

To apply annotations to a section of code, use the following syntax:

/* polyspace:begin<Rule_Set:Rule1[,Rule2] : [Severity] : [Status] >

[Additional text] */

... Code section ...

/* polyspace:end<Rule_Set:Rule1[,Rule2] : [Severity] : [Status] > */

Square brackets [] indicate optional information.

Replace Replace with

Rule_Set • MISRA-C

• MISRA-AC-AGC

• MISRA-CPP

• JSF

• Custom

If you want the comment to apply to all coding rule
violations on the following line, specify ALL.

Rule1,Rule2,... Rule number. For more information, see:

• “MISRA C:2004 and MISRA AC AGC Coding Rules”
• “MISRA C++ Coding Rules”
• “JSF C++ Coding Rules”
• “Custom Coding Rules”

1 Project Configuration

1-60

Replace Replace with

Severity • Unset

• High

• Medium

• Low

• Not a defect

Status Action for correcting the coding rule violation. Possible
values are:

• Fix

• Improve

• Investigate

• Justified

• No action planned

• Other

Additional text Additional comments.

Syntax Examples:

MISRA C rule violation:

polyspace<MISRA-C:6.3 : Low : Justified> Known issue

JSF® rule violation:

polyspace<JSF:9 : Low : Justified> Known issue

 Copy and Paste Annotations

1-61

Copy and Paste Annotations

This example shows how to place annotations in your code to mark defects that you are
already aware of but do not intend to fix immediately. Using your comments, Polyspace
populates the defect Severity, Status and Comment fields on the Results Summary
pane. After you have placed your comments in your code, you or another reviewer can
avoid reviewing the same defect twice.

1 On the Results Summary or Result Details pane, assign a Severity, Status and
Comment to a result.

a Select the result.
b Select options from the Severity and Status dropdown lists.
c In the Comment field, enter a comment that helps you recognize the result

easily.
2 Copy the Severity, Status and Comment.

a On the Results Summary pane, right-click the defect or coding rule violation.
b Select Add Pre-Justification to Clipboard. The software copies the

justification string to the clipboard.
3 Paste the Severity, Status and Comment in your source code.

a On the Results Summary pane, right-click the defect or coding rule violation
and select Open Editor.

Your source file opens on the Code Editor pane or an external text editor
depending on your Preferences. The current line is the line containing the
defect.

b Using the paste option in the text editor, paste the justification template string
on the line immediately before the line containing the defect or coding rule
violation.

You can see your Severity, Status and Comment as a code comment in a
format that Polyspace can read later.

1 Project Configuration

1-62

c Save your source file.
4 Run the analysis again. Open your results.

On the Results Summary pane, the software populates the Severity, Status and
Comment fields for the defect or rule violation. You can either ignore these findings,
or filter them from the Results Summary pane. For more information on filtering,
see “Filter and Group Results” on page 5-9.

 Modify Predefined Target Processor Attributes

1-63

Modify Predefined Target Processor Attributes

You can modify certain attributes of the predefined target processors. If your specific
processor is not listed, you may be able to specify a similar processor and modify its
characteristics to match your processor. The settings that you can modify for each target
are shown in [brackets] in the target processor settings. See “Target processor type (C/C+
+)”.

To modify target processor attributes:

1 On the Configuration pane, select the Target & Compiler node.
2 From the Target processor type drop-down list, select the target processor that

you want to use.
3 To the right of the Target processor type field, click Edit.

The Advanced target options dialog box opens.

4 Modify the attributes as required.

1 Project Configuration

1-64

For information on each target option, see “Generic target options (C/C++)”.
5 Click OK to save your changes.

 Specify Generic Target Processors

1-65

Specify Generic Target Processors

Define Generic Target

If your application is designed for a custom target processor, you can configure many
basic characteristics of the target by selecting the selecting the mcpu... (Advanced)
target, and specifying the characteristics of your processor.

To configure a generic target:

1 On the Configuration pane, select the Target & Compiler node.
2 From the Target processor type drop-down list, select mcpu... (Advanced).

The Generic target options dialog box opens.

3 In the Enter the target name field, enter a name, for example, MyTarget.
4 Specify the parameters for your target, such as the size of basic types, and alignment

with arrays and structures.

1 Project Configuration

1-66

For example, when the alignment of basic types within an array or structure is
always 8, it implies that the storage assigned to arrays and structures is strictly
determined by the size of the individual data objects (without fields and end
padding).

Note: For information on each target option, see “Generic target options (C/C++)”.

5 Click Save to save the generic target options and close the dialog box.

Common Generic Targets

The following tables describe the characteristics of common generic targets.

ST7 (Hiware C compiler : HiCross for ST7)

ST7 char short int long long
long

float double long
double

ptr char is endian

size 8 16 16 32 32 32 32 32 16/32 unsigned Big
alignment8 16/8 16/8 32/16/8 32/16/8 32/16/8 32/16/8 32/16/8 32/16/8 N/A N/A

ST9 (GNU C compiler : gcc9 for ST9)

ST9 char short int long long
long

float double long
double

ptr char is endian

size 8 16 16 32 32 32 64 64 16/64 unsigned Big
alignment8 8 8 8 8 8 8 8 8 N/A N/A

Hitachi H8/300, H8/300L

Hitachi
H8/300,
H8/300L

char short int long long
long

float double long
double

ptr char is endian

size 8 16 16/32 32 64 32 654 64 16 unsigned Big
alignment8 16 16 16 16 16 16 16 16 N/A N/A

Hitachi H8/300H, H8S, H8C, H8/Tiny

 Specify Generic Target Processors

1-67

Hitachi
H8/300H,
H8S,
H8C,
H8/Tiny

char short int long long
long

float double long
double

ptr char is endian

size 8 16 16/ 32 32 64 32 64 64 32 unsigned Big
alignment8 16 32/ 16 32/16 32/16 32/16 32/16 32/16 32/16 N/A N/A

View or Modify Existing Generic Targets

To view or modify generic targets that you previously created:

1 On the Configuration pane, select the Target & Compiler node.
2 From the Target processor type drop-down list, select your target, for example,

myTarget.
3 Click Edit. The Generic target options dialog box opens, displaying your target

attributes.

1 Project Configuration

1-68

4 If required, specify new attributes for your target. Then click Save.
5 Otherwise, click Cancel.

Delete Generic Target

To delete a generic target:

1 On the Configuration pane, select the Target & Compiler node.
2 From the Target processor type drop-down list, select the target that you want to

remove, for example, myTarget.

3 Click Remove. The software removes the target from the list.

 Compile Operating System-Dependent Code

1-69

Compile Operating System-Dependent Code

This section describes the options required to compile and analyze code designed to run
on specific operating systems.

In this section...

“My Target Application Runs on Solaris” on page 1-69
“My Target Application Runs on Vxworks” on page 1-69
“My Target Application Does Not Run on Linux, VxWorks, or Solaris” on page 1-70

This section describes the configuration options required to compile and analyze code
designed to run on specific operating systems. Use the Target operating system
analysis option to add certain predefined compilation flags required for Linux, Windows,
or Solaris™.

My Target Application Runs on Solaris

If Polyspace software runs on a Linux machine:

User interface:

• Target operating system > Solaris
• In your project, include your Solaris include folder.

Command-line:

polyspace-code-prover-nodesktop \

 -OS-target Solaris \

 -I /your_path_to_solaris_includes

My Target Application Runs on Vxworks

If Polyspace software runs on either a Solaris or a Linux machine:

User interface:

• Target operating system > VxWorks
• In your project, include your VxWorks include folder.

1 Project Configuration

1-70

Command-line:

polyspace-code-prover-nodesktop \

 -OS-target vxworks \

 -I /your_path_to_VxWorks_includes

My Target Application Does Not Run on Linux, VxWorks, or Solaris

If your project uses target-specific routines or code, use the following options:

User interface:

• Target operating system > no-predefined-OS
• In your project, include your target include folders.

Command-line:

polyspace-code-prover-nodesktop \

 -OS-target no-predefined-OS \

 -I /your_path_to_target_includes

 Address Alignment

1-71

Address Alignment

Polyspace software handles address alignment by calculating sizeof and alignments.
This approach takes into account 3 constraints implied by the ANSI standard which
ensure that:

• that global sizeof and offsetof fields are optimum (i.e. as short as possible);
• the alignment of addressable units is respected;
• global alignment is respected.

Consider the example:

struct foo {char a; int b;}

• Each field must be aligned; that is, the starting offset of a field must be a multiple of
its own size1

• So in the example, char a begins at offset 0 and its size is 8 bits. int b cannot begin
at 8 (the end of the previous field) because the starting offset must be a multiple of its
own size (32 bits). Consequently, int b begins at offset=32. The size of the struct
foo before global alignment is therefore 64 bits.

• The global alignment of a structure is the maximum of the individual alignments of
each of its fields;

• In the example, global_alignment = max (alignment char a, alignment
int b) = max (8, 32) = 32

• The size of a struct must be a multiple of its global alignment. In our case, b
begins at 32 and is 32 long, and the size of the struct (64) is a multiple of the
global_alignment (32), so sizeof is not adjusted.

1. except in the cases of “double” and “long” on some targets.

1 Project Configuration

1-72

Ignore or Replace Keywords Before Compilation

You can ignore noncompliant keywords, for example, far or 0x, which precede an
absolute address. The template myTpl.pl (listed below) allows you to ignore these
keywords:

1 Save the listed template as C:\Polyspace\myTpl.pl.
2 Select the Configuration > Target & Compiler > Environment Settings pane.
3 To the right of the Command/script to apply to preprocessed files field, click on

the file icon.
4 Use the Open File dialog box to navigate to C:\Polyspace.
5 In the File name field, enter myTpl.pl.
6 Click Open. You see C:\Polyspace\myTpl.pl in the Command/script to apply

to preprocessed files field.

For more information, see “Command/script to apply to preprocessed files (C/C++)”.

Content of myTpl.pl file

#!/usr/bin/perl

##

Post Processing template script

#

##

Usage from Polyspace UI:

#

1) Linux: /usr/bin/perl PostProcessingTemplate.pl

2) Windows: Polyspace_Install\sys\perl\win32\bin\perl.exe <pathtoscript>\

PostProcessingTemplate.pl

#

##

$version = 0.1;

$INFILE = STDIN;

$OUTFILE = STDOUT;

while (<$INFILE>)

{

 Ignore or Replace Keywords Before Compilation

1-73

 # Remove far keyword

 s/far//;

 # Remove "@ 0xFE1" address constructs

 s/\@\s0x[A-F0-9]*//g;

 # Remove "@0xFE1" address constructs

 # s/\@0x[A-F0-9]*//g;

 # Remove "@ ((unsigned)&LATD*8)+2" type constructs

 s/\@\s\(\(unsigned\)\&[A-Z0-9]+*8\)\+\d//g;

 # Convert current line to lower case

$_ =~ tr/A-Z/a-z/;

 # Print the current processed line

 print $OUTFILE $_;

}

Perl Regular Expression Summary

###

Metacharacter What it matches

###

Single Characters

. Any character except newline

[a-z0-9] Any single character in the set

[^a-z0-9] Any character not in set

\d A digit same as

\D A non digit same as [^0-9]

\w An Alphanumeric (word) character

\W Non Alphanumeric (non-word) character

#

Whitespace Characters

\s Whitespace character

\S Non-whitespace character

\n newline

\r return

\t tab

\f formfeed

\b backspace

#

Anchored Characters

1 Project Configuration

1-74

\B word boundary when no inside []

\B non-word boundary

^ Matches to beginning of line

$ Matches to end of line

#

Repeated Characters

x? 0 or 1 occurrence of x

x* 0 or more x's

x+ 1 or more x's

x{m,n} Matches at least m x's and no more than n x's

abc Exactly "abc"

to|be|great One of "to", "be" or "great"

#

Remembered Characters

(string) Used for back referencing see below

\1 or $1 First set of parentheses

\2 or $2 First second of parentheses

\3 or $3 First third of parentheses

##

Back referencing

#

e.g. swap first two words around on a line

red cat -> cat red

s/(\w+) (\w+)/$2 $1/;

#

##

 Analyze Keil or IAR Dialects

1-75

Analyze Keil or IAR Dialects

Typical embedded control applications frequently read and write port data, set timer
registers and read input captures. To deal with this without using assembly language,
some microprocessor compilers have specified special data types like sfr and sbit.
Typical declarations are:

sfr A0 = 0x80;

sfr A1 = 0x81;

sfr ADCUP = 0xDE;

sbit EI = 0x80;

These declarations reside in header files such as regxx.h for the basic 80Cxxx micro
processor. The definition of sfr in these header files customizes the compiler to the
target processor.

When accessing a register or a port, using sfr data is then simple, but is not part of
standard ANSI C:

int status,P0;

void main (void) {

 ADCUP = 0x08; /* Write data to register */

 A1 = 0xFF; /* Write data to Port */

 status = P0; /* Read data from Port */

 EI = 1; /* Set a bit (enable interrupts) */

}

You can analyze this type of code using the Dialect option . This option allows the
software to support the Keil or IAR C language extensions even if some structures,
keywords, and syntax are not ANSI standard. The following tables summarize what is
supported when analyzing code that is associated with the Keil or IAR dialects.

The following table summarizes the supported Keil C language extensions:

Example: -dialect keil -sfr-types sfr=8

Type/Language Description Example Restrictions

Type bit • An expression to type
bit gives values in
range [0,1].

bit x = 0, y = 1,

 z = 2;

assert(x == 0);

assert(y == 1);

assert(z == 1);

pointers to bits and
arrays of bits are not
allowed

1 Project Configuration

1-76

Type/Language Description Example Restrictions

• Converting an
expression in the type,
gives 1 if it is not
equal to 0, else 0. This
behavior is similar to c
++ booltype.

assert(sizeof(bit)

 == sizeof(int));

Type sfr • The -sfr-types
option defines
unsigned types name
and size in bits.

• The behavior of a
variable follows
a variable of type
integral.

• A variable which
overlaps another one
(in term of address)
will be considered as
volatile.

sfr x = 0xf0; //

declaration of

variable x at

address 0xF0

sfr16 y = 0x4EEF;

For this example, options
need to be:

-dialect keil

-sfr-types sfr=8,

 sfr16=16

sfr and sbit types
are only allowed
in declarations of
external global
variables.

Type sbit • Each read/write
access of a variable is
replaced by an access
of the corresponding
sfr variable access.

• Only external global
variables can be
mapped with a sbit
variable.

• Allowed expressions
are integer variables,
cells of array of int
and struct/union
integral fields.

• a variable can also be
declared as extern bit
in an another file.

sfr x = 0xF0;

sbit x1 = x ^ 1; // 1st bit of x

sbit x2 = 0xF0 ^ 2; // 2nd bit of x

sbit x3 = 0xF3; // 3rd bit of x

sbit y0 = t[3] ^ 1;

/* file1.c */

sbit x = P0 ^ 1;

/* file2.c */

extern bit x;

x = 1; // set the 1st bit of P0 to 1

 Analyze Keil or IAR Dialects

1-77

Type/Language Description Example Restrictions

Absolute variable
location

Allowed constants are
integers, strings and
identifiers.

int var _at_ 0xF0

int x @ 0xFE ;

static const

int y @ 0xA0 = 3;

Absolute variable
locations are ignored
(even if declared with
a #pragma location).

Interrupt
functions

A warnings in the log
file is displayed when an
interrupt function has
been found: "interrupt
handler detected :
<name>" or "task entry
point detected : <name>"

void foo1 (void)

interrupt XX = YY

using 99 {…}

void foo2 (void) _

task_ 99 _priority_

2 {…}

Entry points and
interrupts are not
taken into account as
-entry-points.

Keywords ignored alien, bdata, far, idata, ebdata, huge, sdata, small, compact, large, reentrant.
Defining -D __C51__, keywords large code, data, xdata, pdata and xhuge are
ignored.

The following table summarize the IAR dialect:

Example: -dialect iar -sfr-types sfr=8

Type/Language Description Example Restrictions

Type bit • An expression to type
bit gives values in
range [0,1].

• Converting an
expression in the type,
gives 1 if it is not
equal to 0, else 0. This
behavior is similar to c
++ bool type.

• If initialized with
values 0 or 1, a
variable of type bit is
a simple variable (like
a c++ bool).

• A variable of type
bit is a register bit

union {

 int v;

 struct {

 int z;

 } y;

} s;

void f(void) {

 bit y1 = s.y.z . 2;

 bit x4 = x.4;

 bit x5 = 0xF0 . 5;

 y1 = 1;

 // 2nd bit of s.y.z

 // is set to 1

};

pointers to bits and
arrays of bits are not
allowed

1 Project Configuration

1-78

Type/Language Description Example Restrictions

variable (mapped with
a bit or a sfr type)

Type sfr • The -sfr-types
option defines
unsigned types name
and size.

• The behavior of a
variable follows
a variable of type
integral.

• A variable which
overlaps another one
(in term of address)
will be considered as
volatile.

sfr x = 0xf0; //

declaration of

variable x at

address 0xF0

sfr and sbit types
are only allowed
in declarations of
external global
variables.

Individual bit
access

• Individual bit
can be accessed
without using sbit/bit
variables.

• Type is allowed for
integer variables, cells
of integer array, and
struct/union integral
fields.

int x[3], y;

x[2].2 = x[0].3 + y.1;

Absolute variable
location

Allowed constants are
integers, strings and
identifiers.

int var @ 0xF0;

int xx @ 0xFE ;

static const int y \

 @0xA0 = 3;

Absolute variable
locations are ignored
(even if declared with
a #pragma location).

Interrupt
functions

• A warning is
displayed in the log
file when an interrupt
function has been
found: "interrupt
handler detected :
funcname"

interrupt [1] \

 using [99] void \

 foo1(void) { ... };

monitor [3] void \

 foo2(void) { ... };

Entry points and
interrupts are not
taken into account as
-entry-points.

 Analyze Keil or IAR Dialects

1-79

Type/Language Description Example Restrictions

• A monitor function
is a function that
disables interrupts
while it is executing,
and then restores the
previous interrupt
state at function exit.

Keywords ignored saddr, reentrant, reentrant_idata, non_banked, plm,

bdata, idata, pdata, code, data, xdata, xhuge, interrupt,

__interrupt and __intrinsic

Unnamed struct/
union

• Fields of unions/
structs without a
tag or a name can
be accessed without
naming their parent
struct.

• On a conflict
between a field of an
anonymous struct
with other identifiers:

• with a variable
name, field name
is hidden

• with a field
of another
anonymous struct
at different scope,
closer scope is
chosen

• with a field
of another
anonymous struct
at same scope: an
error "anonymous
struct field name
<name> conflict“ is

union { int x; };

union { int y; struct { int

z; }; } @ 0xF0;

1 Project Configuration

1-80

Type/Language Description Example Restrictions

displayed in the log
file.

no_init attribute • a global variable
declared with this
attribute is handled
like an external
variable.

• It is handled like a
type qualifier.

no_init int x;

no_init union

{ int y; } @ 0xFE;

The #pragma
no_init does not
affect the code.

The option -sfr-types defines the size of a sfr type for the Keil or IAR dialect.

The syntax for an sfr element in the list is type-name=typesize.

For example:

-sfr-types sfr=8,sfr16=16

defines two sfr types: sfr with a size of 8 bits, and sfr16 with a size of 16-bits. A value
type-name must be given only once. 8, 16 and 32 are the only supported values for type-
size.

Note: As soon as an sfr type is used in the code, you must specify its name and size,
even if it is the keyword sfr.

Note: Many IAR and Keil compilers currently exist that are associated to specific targets.
It is difficult to maintain a complete list of those supported.

 Supported C++ 2011 Extensions

1-81

Supported C++ 2011 Extensions

The following table list which C++ 2011 standards Polyspace can analyze. If your code
contains non-supported constructions, Polyspace reports a compilation error.

Standard Description Supported

C++2011-
N2118 Rvalue references Yes
C++2011-
N2439 Rvalue references for *this Yes
C++2011-
N1610 Initialization of class objects by rvalues Yes
C++2011-
N2756 Non-static data member initializers Yes
C++2011-
N2242 Variadic templates Yes
C++2011-
N2555 Extending variadic template template parameters Yes
C++2011-
N2672 Initializer lists Yes
C++2011-
N1720 Static assertions Yes
C++2011-
N1984 auto-typed variables Yes
C++2011-
N1737 Multi-declarator auto Yes
C++2011-
N2546 Removal of auto as a storage-class specifier Yes
C++2011-
N2541 New function declarator syntax Yes
C++2011-
N2927 New wording for C++0x lambdas Yes
C++2011-
N2343 Declared type of an expression Yes

1 Project Configuration

1-82

Standard Description Supported

C++2011-
N3276 decltype and call expressions Yes
C++2011-
N1757 Right angle brackets Yes
C++2011-
DR226 Default template arguments for function templates Yes
C++2011-
DR339 Solving the SFINAE problem for expressions Yes
C++2011-
N2258 Template aliases Yes
C++2011-
N1987 Extern templates Yes
C++2011-
N2431 Null pointer constant Yes
C++2011-
N2347 Strongly-typed enums Yes
C++2011-
N2764 Forward declarations for enums Yes
C++2011-
N2761 Generalized attributes Yes
C++2011-
N2235 Generalized constant expressions Yes
C++2011-
N2341 Alignment support Yes
C++2011-
N1986 Delegating constructors Yes
C++2011-
N2540 Inheriting constructors Yes
C++2011-
N2437 Explicit conversion operators Yes
C++2011-
N2249 New character types Yes

 Supported C++ 2011 Extensions

1-83

Standard Description Supported

C++2011-
N2442 Unicode string literals Yes
C++2011-
N2442 Raw string literals Yes
C++2011-
N2170 Universal character name literals No
C++2011-
N2765 User-defined literals Yes
C++2011-
N2342 Standard Layout Types No
C++2011-
N2346 Defaulted and deleted functions Yes
C++2011-
N1791 Extended friend declarations Yes
C++2011-
N2253 Extending sizeof Yes
C++2011-
N2535 Inline namespaces Yes
C++2011-
N2544 Unrestricted unions Yes
C++2011-
N2657 Local and unnamed types as template arguments Yes
C++2011-
N2930 Range-based for Yes
C++2011-
N2928 Explicit virtual overrides Yes
C++2011-
N3050 Allowing move constructors to throw [noexcept] Yes
C++2011-
N3053 Defining move special member functions Yes
C++2011-
N2239 Concurrency - Sequence points No

1 Project Configuration

1-84

Standard Description Supported

C++2011-
N2427 Concurrency - Atomic operations No
C++2011-
N2748 Concurrency - Strong Compare and Exchange No
C++2011-
N2752 Concurrency - Bidirectional Fences No
C++2011-
N2429 Concurrency - Memory model No
C++2011-
N2664

Concurrency - Data-dependency ordering: atomics and
memory model No

C++2011-
N2179 Concurrency - Propagating exceptions No
C++2011-
N2440 Concurrency - Abandoning a process and at_quick_exit Yes
C++2011-
N2547 Concurrency - Allow atomics use in signal handlers No
C++2011-
N2659 Concurrency - Thread-local storage No
C++2011-
N2660

Concurrency - Dynamic initialization and destruction
with concurrency No

C++2011-
N2340 __func__ predefined identifier Yes
C++2011-
N1653 C99 preprocessor Yes
C++2011-
N1811 long long Yes
C++2011-
N1988 Extended integral types No

See Also
“C++11 Extensions (C++)”

 Gather Compilation Options Efficiently

1-85

Gather Compilation Options Efficiently

The code is often tuned for the target (as discussed in “Analyze Keil or IAR Dialects”
on page 1-75). Rather than applying minor changes to the code, create a single
polyspace.h file which contains target specific functions and options. The -include
option can then be used to force the inclusion of the polyspace.h file in the source files.

Where there are missing prototypes or conflicts in variable definition, writing the
expected definition or prototype within such a header file will yield several advantages.

Direct benefits:

• The error detection is much faster since it will be detected during compilation rather
than in the link or subsequent phases.

• The position of the error will be identified more precisely.
• Original source files will not need to be modified.

Indirect benefits:

• The file is automatically included as the very first file in the original .c files.
• The file can contain much more powerful macro definitions than simple -D options.
• The file is reusable for other projects developed under the same environment.

Example

This is an example of a file that can be used with the -include option.

// The file may include (say) a standard include file implicitly

// included by the cross compiler

#include <stdlib.h>

#include "another_file.h"

// Generic definitions, reusable from one project to another

#define far

#define at(x)

// A prototype may be positioned here to aid in the solution of

// a link phase conflict between

// declaration and definition. This will allow detection of the

// same error at compilation time instead of at link time.

1 Project Configuration

1-86

// Leads to:

// - earlier detection

// - precise localisation of conflict at compilation time

void f(int);

// The same also applies to variables.

extern int x;

// Standard library stubs can be avoided,

// and OS standard prototypes redefined.

#define POLYSPACE_NO_STANDARD_STUBS // use this flag to prevent the

 //automatic stubbing of std functions

#define __polyspace_no_sscanf

#define __polyspace_no_fgetc

void sscanf(int, char, char, char, char, char);

void fgetc(void);

 Specify Constraints

1-87

Specify Constraints

This example shows how to specify constraints on variables in your code. Polyspace uses
the code that you provide to make assumptions about variable ranges, allowed buffer size
for pointers, and other items. However, sometimes the assumptions are broader than
what you expect because:

• You have not provided the complete code. For example, you have not provided some of
the function definitions.

• Some of the information about variables is available only at run-time. For example,
some variables in your code obtain values from the user at run time.

Because of these broad assumptions, Polyspace can sometimes produce false positives.

To reduce the number of such false positives, you can specify additional constraints
on global variables, function inputs and return values of stubbed functions. After you
specify your constraints, you can save them as an XML file and use them for subsequent
verifications. If your source code changes, you can update the previous constraints. You
do not have to create a new constraint template from scratch.

In this section...

“Create Constraint Template” on page 1-87
“Update Existing Template” on page 1-89

Create Constraint Template

1 On the Configuration pane, select Inputs & Stubbing.
2 To the right of Constraint setup, click the Edit button.

The Constraint Specification dialog box opens.

1 Project Configuration

1-88

3
Click . The software compiles your project and creates a template.

The template contains a list of all variables on which you can provide constraints.
4 Specify your constraints and save the template as an XML file. For more

information, see “Constraints” on page 1-90.
5 Click OK.

You see the full path to the template XML file in the Constraint setup field. If you
run a verification, Polyspace uses this template for extracting variable constraints.

Note: Specifying constraints outside your code in this way allows more precise
verification. However, because the constraints are outside your code, you must use the
code within the specified constraints. Otherwise, the verification results might not apply.
For example, if you use function inputs outside your specified range, a run-time error can
occur on an operation even though checks on the operation are green.

To specify constraints in your code, you can use:

• Appropriate error handling tests in your code.

Polyspace checks if the errors can actually occur. If they do not occur, the test blocks
appear as Unreachable code.

 Specify Constraints

1-89

• The assert macro. For example, to constrain a variable var in the range [0,10], you
can use assert(var >= 0 && var <=10);.

Polyspace checks your assert statements to see if the condition can be false.
Following the assert statement, Polyspace considers that the assert condition is
true. Therefore, if you use appropriate assert statements, for the remaining code in
the same scope, your variables are constrained. For examples, see User assertion.

Update Existing Template

1 On the Configuration pane, select Inputs & Stubbing.
2 Open the existing template in one of the following ways:

• Enter the path to the template XML file in the Constraint setup field. Click
Edit.

•
Click Edit. In the Constraint Specification dialog box, click the icon, to
navigate to your template file.

3 Click Update.

a Variables that are no longer present in your source code appear under the Non
Applicable node. To remove an entry under the Non Applicable node or the
node itself, right-click and select Remove This Node.

b Specify your new constraints for any of the other variables.

See Also
“Constraint setup (C/C++)”

Related Examples
• “Constrain Global Variable Range”

http://www.cplusplus.com/reference/cassert/assert/

1 Project Configuration

1-90

Constraints

The Polyspace DRS Configuration interface allows you to specify constraints for:

• Global Variables.
• User-defined Functions.
• Stubbed Functions.

For more information, see “Specify Constraints” on page 1-87.

The following table lists the constraints that can be specified through this interface.

Column Settings

Name Displays the list of variables and functions in your Project for
which you can specify data ranges.

This Column displays three expandable menu items:

• Globals – Displays global variables in the project.
• User defined functions – Displays user-defined functions in

the project. Expand a function name to see its inputs.
• Stubbed functions – Displays a list of stub functions in the

project. Expand a function name to see the inputs and return
values.

File Displays the name of the source file containing the variable or
function.

Attributes Displays information about the variable or function.

For example, static variables display static.
Data Type Displays the variable type.
Main Generator
Called

Applicable only for user-defined functions.

Specifies whether the main generator calls the function:

• MAIN GENERATOR – Main generator may call this function,
depending on the value of the -functions-called-in-loop
(C) or -main-generator-calls (C++) parameter.

• NO – Main generator will not call this function.

 Constraints

1-91

Column Settings

• YES – Main generator will call this function.
Init Mode Specifies how the software assigns a range to the variable:

• MAIN GENERATOR – Variable range is assigned depending
on the settings of the main generator options -variables-
written-before-loop and -no-def-init-glob. (For C++,
the options are -main-generator-writes-variables, and
-no-def-init-glob.)

• IGNORE – Variable is not assigned to any range, even if a range
is specified.

• INIT – Variable is assigned to the specified range only at
initialization, and keeps the range until first write.

• PERMANENT – Variable is permanently assigned to the specified
range. If the variable is assigned outside this range during the
program, no warning is provided. Use the globalassert mode
if you need a warning.

User-defined functions support only INIT mode.

Stub functions support only PERMANENT mode.

For C verifications, global pointers support MAIN GENERATOR,
IGNORE, or INIT mode.

• MAIN GENERATOR – Pointer follows the options of the main
generator.

• IGNORE – Pointer is not initialized
• INIT – Specify if the pointer is NULL, and how the pointed

object is allocated (Initialize Pointer and Init Allocated
options).

1 Project Configuration

1-92

Column Settings

Init Range Specifies the minimum and maximum values for the variable.

You can use the keywords min and max to denote the minimum
and maximum values of the variable type. For example, for
the type long, min and max correspond to -2^31 and 2^31-1
respectively.

You can also use hexadecimal values. For example: 0x12..0x100

For enum variables, you cannot specify ranges directly using the
enumerator constants. Instead use the values represented by the
constants.

For enum variables, you can also use the keywords enum_min and
enum_max to denote the minimum and maximum values that the
variable can take. For example, for an enum variable of the type
defined below, enum_min is 0 and enum_max is 5:

enum week{ sunday, monday=0, tuesday,

 wednesday, thursday, friday, saturday};

Initialize Pointer Applicable only to pointers. Enabled only when you specify Init
Mode:INIT.

Specifies whether the pointer should be NULL:

• May-be NULL – The pointer could potentially be a NULL
pointer (or not).

• Not Null – The pointer is never initialized as a null pointer.
• Null – The pointer is initialized as NULL.

Note: Not applicable for C++ projects.

 Constraints

1-93

Column Settings

Init Allocated Applicable only to pointers. Enabled only when you specify Init
Mode:INIT.

Specifies how the pointed object is allocated:

• MAIN GENERATOR – The pointed object is allocated by the main
generator.

• None – Pointed object is not written.
• SINGLE – Write the pointed object or the first element of an

array. (This setting is useful for stubbed function parameters.)
• MULTI – All objects (or array elements) are initialized.

See .

Note: Not applicable for C++ projects.
Allocated
Objects

Applicable only to pointers.

Specifies how many objects are pointed to by the pointer (the
pointed object is considered as an array).

Note: The Init Allocated parameter specifies how many allocated
objects are actually initialized. See .

Note: Not applicable for C++ projects.
Global Assert Specifies whether to perform an assert check on the variable at

global initialization, and after each assignment.
Global Assert
Range

Specifies the minimum and maximum values for the range you
want to check.

Comment Remarks that you enter, for example, justification for your DRS
values.

1 Project Configuration

1-94

Storage of Polyspace Preferences

The software stores the settings that you specify through the Polyspace Preferences
dialog box in the following file:

• Windows: $Drive\Users\$User\AppData\Roaming\MathWorks \MATLAB
\$Release\Polyspace\polyspace.prf

• Linux: /home/$User/.matlab/$Release/Polyspace/polyspace.prf

Here, $Drive is the drive where the operating system files are located such as C:, $User
is the username and $Release is the release number.

The following file stores the location of all installed Polyspace products across various
releases:

• Windows: $Drive\Users\$User\AppData\Roaming\MathWorks
\MATLAB \AppData\Roaming\MathWorks\MATLAB \polyspace_shared

\polyspace_products.prf

• Linux : /home/$User/.matlab/polyspace_shared/polyspace_products.prf

2

Coding Rule Sets and Concepts

• “Rule Checking” on page 2-2
• “Polyspace MISRA C 2004 and MISRA AC AGC Checkers” on page 2-4
• “Software Quality Objective Subsets (C:2004)” on page 2-5
• “Software Quality Objective Subsets (AC AGC)” on page 2-10
• “MISRA C:2004 and MISRA AC AGC Coding Rules” on page 2-14
• “Polyspace MISRA C:2012 Checker” on page 2-53
• “Software Quality Objective Subsets (C:2012)” on page 2-54
• “Unsupported MISRA C:2012 Guidelines” on page 2-59
• “Polyspace MISRA C++ Checker” on page 2-60
• “Software Quality Objective Subsets (C++)” on page 2-61
• “MISRA C++ Coding Rules” on page 2-68
• “Polyspace JSF C++ Checker” on page 2-95
• “JSF C++ Coding Rules” on page 2-96

2 Coding Rule Sets and Concepts

2-2

Rule Checking

Polyspace Coding Rule Checker

Polyspace software allows you to analyze code to demonstrate compliance with
established C and C++ coding standards:

• MISRA C 2004
• MISRA C 2012
• MISRA® C++:2008
• JSF++:2005

Applying coding rules can reduce the number of defects and improve the quality of your
code.

While creating a project, you specify both the coding standard, and which rules to
enforce. Polyspace software performs rule checking before and during the analysis.
Violations appear in the Results Summary pane.

If any source files in the analysis do not compile, coding rules checking will be
incomplete. The coding rules checker results:

• May not contain full results for files that did not compile
• May not contain full results for the files that did compile as some rules are checked

only after compilation is complete

Note: When you enable the Compilation Assistant and coding rules checking, the
software does not report coding rule violations if there are compilation errors.

Differences Between Bug Finder and Code Prover

Coding rule checker results can differ between Polyspace Bug Finder and Polyspace
Code Prover. The rule checking engines are identical in Bug Finder and Code Prover,
but the context in which the checkers execute is not the same. If a project is launched
from Bug Finder and Code Prover with the same source files and same configuration
options, the coding rule results can differ. For example, the main generator used in Code
Prover activates global variables, which causes the rule checkers to identify such global

 Rule Checking

2-3

variables as initialized. The Bug Finder does not have a main generator, so handles the
initialization of the global variables differently. Another difference is how violations are
reported. The coding rules violations found in header files are not reported to the user in
Bug Finder, but these violations are visible in Code Prover.

This difference can occur in MISRA C:2004, MISRA C:2012, MISRA C++, and JSF++. See
the Polyspace Specification column or the Description for each rule.

Even though there are differences between rules checkers in Bug Finder and Code
Prover, both reports are valid in their own context. For quick coding rules checking, use
Polyspace Bug Finder.

2 Coding Rule Sets and Concepts

2-4

Polyspace MISRA C 2004 and MISRA AC AGC Checkers

The Polyspace MISRA C:2004 checker helps you comply with the MISRA C 2004 coding
standard.2

When MISRA C rules are violated, the MISRA C checker enables Polyspace software to
provide messages with information about the rule violations. Most messages are reported
during the compile phase of an analysis.

The MISRA C checker can check nearly all of the 142 MISRA C:2004 rules.

The MISRA AC AGC checker checks rules from the OBL (obligatory) and REC
(recommended) categories specified by MISRA AC AGC Guidelines for the Application of
MISRA-C:2004 in the Context of Automatic Code Generation.

There are subsets of MISRA coding rules that can have a direct or indirect impact on the
selectivity (reliability percentage) of your results. When you set up rule checking, you can
select these subsets directly. These subsets are defined in:

• “Software Quality Objective Subsets (C:2004)” on page 2-5
• “Software Quality Objective Subsets (AC AGC)” on page 2-10

Note: The Polyspace MISRA checker is based on MISRA C:2004, which also incorporates
MISRA C Technical Corrigendum (http://www.misra-c.com).

2. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the MISRA
Consortium.

http://www.misra-c.com/

 Software Quality Objective Subsets (C:2004)

2-5

Software Quality Objective Subsets (C:2004)

In this section...

“Rules in SQO-Subset1” on page 2-5
“Rules in SQO-Subset2” on page 2-6

Rules in SQO-Subset1

In Polyspace Code Prover, the following set of coding rules will typically reduce the
number of unproven results.

Rule number Description

5.2 Identifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier.

8.11 The static storage class specifier shall be used in definitions and
declarations of objects and functions that have internal linkage.

8.12 When an array is declared with external linkage, its size shall be
stated explicitly or defined implicitly by initialization.

11.2 Conversion shall not be performed between a pointer to an object and
any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an integral
type.

12.12 The underlying bit representations of floating-point values shall not
be used.

13.3 Floating-point expressions shall not be tested for equality or
inequality.

13.4 The controlling expression of a for statement shall not contain any
objects of floating type.

13.5 The three expressions of a for statement shall be concerned only with
loop control.

14.4 The goto statement shall not be used.
14.7 A function shall have a single point of exit at the end of the function.

2 Coding Rule Sets and Concepts

2-6

Rule number Description

16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
16.7 A pointer parameter in a function prototype should be declared as

pointer to const if the pointer is not used to modify the addressed
object.

17.3 >, >=, <, <= shall not be applied to pointer types except where they
point to the same array.

17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 The declaration of objects should contain no more than 2 levels of

pointer indirection.
17.6 The address of an object with automatic storage shall not be assigned

to an object that may persist after the object has ceased to exist.
18.3 An area of memory shall not be reused for unrelated purposes.
18.4 Unions shall not be used.
20.4 Dynamic heap memory allocation shall not be used.

Note: Polyspace software does not check MISRA rule 18.3.

Rules in SQO-Subset2

Good design practices generally lead to less code complexity, which can reduce the
number of unproven results in Polyspace Code Prover. The following set of coding
rules enforce good design practices. The SQO-subset2 option checks the rules in SQO-
subset1 and some additional rules.

Rule number Description

5.2 Identifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier.

6.3 typedefs that indicate size and signedness should be used in place of
the basic types

8.7 Objects shall be defined at block scope if they are only accessed from
within a single function

 Software Quality Objective Subsets (C:2004)

2-7

Rule number Description

8.11 The static storage class specifier shall be used in definitions and
declarations of objects and functions that have internal linkage.

8.12 When an array is declared with external linkage, its size shall be
stated explicitly or defined implicitly by initialization.

9.2 Braces shall be used to indicate and match the structure in the
nonzero initialization of arrays and structures

9.3 In an enumerator list, the = construct shall not be used to explicitly
initialize members other than the first, unless all items are explicitly
initialized

10.3 The value of a complex expression of integer type may only be cast to
a type that is narrower and of the same signedness as the underlying
type of the expression

10.5 Bitwise operations shall not be performed on signed integer types
11.1 Conversion shall not be performed between a pointer to a function

and any type other than an integral type
11.2 Conversion shall not be performed between a pointer to an object and

any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an
integral type.

11.5 Type casting from any type to or from pointers shall not be used
12.1 Limited dependence should be placed on C's operator precedence

rules in expressions
12.2 The value of an expression shall be the same under any order of

evaluation that the standard permits
12.5 The operands of a logical && or || shall be primary-expressions
12.6 Operands of logical operators (&&, || and !) should be effectively

Boolean. Expression that are effectively Boolean should not be used
as operands to operators other than (&&, || or !)

12.9 The unary minus operator shall not be applied to an expression
whose underlying type is unsigned

12.10 The comma operator shall not be used

2 Coding Rule Sets and Concepts

2-8

Rule number Description

12.12 The underlying bit representations of floating-point values shall not
be used.

13.1 Assignment operators shall not be used in expressions that yield
Boolean values

13.2 Tests of a value against zero should be made explicit, unless the
operand is effectively Boolean

13.3 Floating-point expressions shall not be tested for equality or
inequality.

13.4 The controlling expression of a for statement shall not contain any
objects of floating type.

13.5 The three expressions of a for statement shall be concerned only with
loop control.

13.6 Numeric variables being used within a “for” loop for iteration
counting should not be modified in the body of the loop

14.4 The goto statement shall not be used.
14.7 A function shall have a single point of exit at the end of the function.
14.8 The statement forming the body of a switch, while, do while or for

statement shall be a compound statement
14.10 All if else if constructs should contain a final else clause
15.3 The final clause of a switch statement shall be the default clause
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
16.3 Identifiers shall be given for all of the parameters in a function

prototype declaration
16.7 A pointer parameter in a function prototype should be declared as

pointer to const if the pointer is not used to modify the addressed
object.

16.8 All exit paths from a function with non-void return type shall have an
explicit return statement with an expression

16.9 A function identifier shall only be used with either a preceding &, or
with a parenthesized parameter list, which may be empty

 Software Quality Objective Subsets (C:2004)

2-9

Rule number Description

17.3 >, >=, <, <= shall not be applied to pointer types except where they
point to the same array.

17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 The declaration of objects should contain no more than 2 levels of

pointer indirection.
17.6 The address of an object with automatic storage shall not be assigned

to an object that may persist after the object has ceased to exist.
18.3 An area of memory shall not be reused for unrelated purposes.
18.4 Unions shall not be used.
19.4 C macros shall only expand to a braced initializer, a constant, a

parenthesized expression, a type qualifier, a storage class specifier, or
a do-while-zero construct

19.9 Arguments to a function-like macro shall not contain tokens that look
like preprocessing directives

19.10 In the definition of a function-like macro each instance of a
parameter shall be enclosed in parentheses unless it is used as the
operand of # or ##

19.11 All macro identifiers in preprocessor directives shall be defined before
use, except in #ifdef and #ifndef preprocessor directives and the
defined() operator

19.12 There shall be at most one occurrence of the # or ## preprocessor
operators in a single macro definition.

20.3 The validity of values passed to library functions shall be checked.
20.4 Dynamic heap memory allocation shall not be used.

Note: Polyspace software does not check MISRA rule 20.3 directly.

However, you can check this rule by writing manual stubs that check the validity of
values. For example, the following code checks the validity of an input being greater than
1:

int my_system_library_call(int in) {assert (in>1); if random \

return -1 else return 0; }

2 Coding Rule Sets and Concepts

2-10

Software Quality Objective Subsets (AC AGC)

In this section...

“Rules in SQO-Subset1” on page 2-10
“Rules in SQO-Subset2” on page 2-11

Rules in SQO-Subset1

In Polyspace Code Prover, the following set of coding rules will typically reduce the
number of unproven results.

Rule number Description

5.2 Identifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier.

8.11 The static storage class specifier shall be used in definitions and
declarations of objects and functions that have internal linkage.

8.12 When an array is declared with external linkage, its size shall be
stated explicitly or defined implicitly by initialization.

11.2 Conversion shall not be performed between a pointer to an object and
any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an
integral type.

12.12 The underlying bit representations of floating-point values shall not
be used.

14.7 A function shall have a single point of exit at the end of the function.
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
17.3 >, >=, <, <= shall not be applied to pointer types except where they

point to the same array.
17.6 The address of an object with automatic storage shall not be assigned

to an object that may persist after the object has ceased to exist.
18.4 Unions shall not be used.

 Software Quality Objective Subsets (AC AGC)

2-11

For more information about these rules, see MISRA AC AGC Guidelines for the
Application of MISRA-C:2004 in the Context of Automatic Code Generation.

Rules in SQO-Subset2

Good design practices generally lead to less code complexity, which can reduce the
number of unproven results in Polyspace Code Prover. The following set of coding
rules enforce good design practices. The SQO-subset2 option checks the rules in SQO-
subset1 and some additional rules.

Rule number Description

5.2 Identifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier.

6.3 typedefs that indicate size and signedness should be used in place of
the basic types

8.7 Objects shall be defined at block scope if they are only accessed from
within a single function

8.11 The static storage class specifier shall be used in definitions and
declarations of objects and functions that have internal linkage.

8.12 When an array is declared with external linkage, its size shall be
stated explicitly or defined implicitly by initialization.

9.3 In an enumerator list, the = construct shall not be used to explicitly
initialize members other than the first, unless all items are explicitly
initialized

11.1 Conversion shall not be performed between a pointer to a function
and any type other than an integral type

11.2 Conversion shall not be performed between a pointer to an object and
any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an
integral type.

11.5 Type casting from any type to or from pointers shall not be used
12.2 The value of an expression shall be the same under any order of

evaluation that the standard permits

2 Coding Rule Sets and Concepts

2-12

Rule number Description

12.9 The unary minus operator shall not be applied to an expression
whose underlying type is unsigned

12.10 The comma operator shall not be used
12.12 The underlying bit representations of floating-point values shall not

be used.
14.7 A function shall have a single point of exit at the end of the function.
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
16.3 Identifiers shall be given for all of the parameters in a function

prototype declaration
16.8 All exit paths from a function with non-void return type shall have an

explicit return statement with an expression
16.9 A function identifier shall only be used with either a preceding &, or

with a parenthesized parameter list, which may be empty
17.3 >, >=, <, <= shall not be applied to pointer types except where they

point to the same array.
17.6 The address of an object with automatic storage shall not be assigned

to an object that may persist after the object has ceased to exist.
18.4 Unions shall not be used.
19.9 Arguments to a function-like macro shall not contain tokens that look

like preprocessing directives
19.10 In the definition of a function-like macro each instance of a

parameter shall be enclosed in parentheses unless it is used as the
operand of # or ##

19.11 All macro identifiers in preprocessor directives shall be defined before
use, except in #ifdef and #ifndef preprocessor directives and the
defined() operator

19.12 There shall be at most one occurrence of the # or ## preprocessor
operators in a single macro definition.

20.3 The validity of values passed to library functions shall be checked.

 Software Quality Objective Subsets (AC AGC)

2-13

Note: Polyspace software does not check MISRA rule 20.3 directly.

However, you can check this rule by writing manual stubs that check the validity of
values. For example, the following code checks the validity of an input being greater than
1:

int my_system_library_call(int in) {assert (in>1); if random \

return -1 else return 0; }

For more information about these rules, see MISRA AC AGC Guidelines for the
Application of MISRA-C:2004 in the Context of Automatic Code Generation.

2 Coding Rule Sets and Concepts

2-14

MISRA C:2004 and MISRA AC AGC Coding Rules
In this section...

“Supported MISRA C:2004 and MISRA AC AGC Rules” on page 2-14
“Unsupported MISRA C:2004 and MISRA AC AGC Rules” on page 2-50

Supported MISRA C:2004 and MISRA AC AGC Rules

The following tables list MISRA C:2004 coding rules that the Polyspace coding rules
checker supports. Details regarding how the software checks individual rules and any
limitations on the scope of checking are described in the “Polyspace Specification”
column.

Note: The Polyspace coding rules checker:

• Supports MISRA-C:2004 Technical Corrigendum 1 for rules 4.1, 5.1, 5.3, 6.1, 6.3, 7.1,
9.2, 10.5, 12.6, 13.5, and 15.0.

• Checks rules specified by MISRA AC AGC Guidelines for the Application of MISRA-
C:2004 in the Context of Automatic Code Generation.

The software reports most violations during the compile phase of an analysis. However,
the software detects violations of rules 9.1 (Non-initialized variable), 12.11 (one
of the overflow checks) using -scalar-overflows-checks signed-and-unsigned),
13.7 (dead code), 14.1 (dead code), 16.2 and 21.1 during code analysis, and reports these
violations as run-time errors.

Note: Some violations of rules 13.7 and 14.1 are reported during the compile phase of
analysis.

• “Environment” on page 2-15
• “Language Extensions” on page 2-18
• “Documentation” on page 2-18
• “Character Sets” on page 2-19
• “Identifiers” on page 2-19

 MISRA C:2004 and MISRA AC AGC Coding Rules

2-15

• “Types” on page 2-20
• “Constants” on page 2-21
• “Declarations and Definitions” on page 2-22
• “Initialization” on page 2-24
• “Arithmetic Type Conversion” on page 2-25
• “Pointer Type Conversion” on page 2-29
• “Expressions” on page 2-30
• “Control Statement Expressions” on page 2-34
• “Control Flow” on page 2-37
• “Switch Statements” on page 2-39
• “Functions” on page 2-40
• “Pointers and Arrays” on page 2-42
• “Structures and Unions” on page 2-43
• “Preprocessing Directives” on page 2-43
• “Standard Libraries” on page 2-47
• “Runtime Failures” on page 2-50

Environment

N. MISRA Definition Messages in report file Polyspace Specification

1.1 All code shall conform
to ISO® 9899:1990
“Programming languages -
C”, amended and corrected
by ISO/IEC 9899/COR1:1995,
ISO/IEC 9899/AMD1:1995,
and ISO/IEC 9899/
COR2:1996.

The text All code shall
conform to ISO 9899:1990
Programming languages C,
amended and corrected by
ISO/IEC 9899/COR1:1995,
ISO/IEC 9899/AMD1:1995,
and ISO/IEC 9899/
COR2:1996 precedes each of
the following messages:

• ANSI C does not allow
‘#include_next'

• ANSI C does not allow
macros with variable
arguments list

All the supported extensions
lead to a violation of this
MISRA rule. Standard
compilation error messages
do not lead to a violation of
this MISRA rule and remain
unchanged.

2 Coding Rule Sets and Concepts

2-16

N. MISRA Definition Messages in report file Polyspace Specification

• ANSI C does not allow
‘#assert’

• ANSI C does not allow
'#unassert'

• ANSI C does not allow
testing assertions

• ANSI C does not allow
'#ident'

• ANSI C does not allow
'#sccs'

• text following '#else'
violates ANSI standard.

• text following '#endif'
violates ANSI standard.

• text following '#else' or
'#endif' violates ANSI
standard.

 MISRA C:2004 and MISRA AC AGC Coding Rules

2-17

N. MISRA Definition Messages in report file Polyspace Specification

1.1
(cont.)

 The text All code shall
conform to ISO 9899:1990
Programming languages C,
amended and corrected by
ISO/IEC 9899/COR1:1995,
ISO/IEC 9899/AMD1:1995,
and ISO/IEC 9899/
COR2:1996 precedes each of
the following messages:

• ANSI C90 forbids 'long
long int' type.

• ANSI C90 forbids 'long
double' type.

• ANSI C90 forbids long
long integer constants.

• Keyword 'inline' should
not be used.

• Array of zero size should
not be used.

• Integer constant does not
fit within unsigned long
int.

• Integer constant does not
fit within long int.

• Too many nesting levels
of #includes: N1. The
limit is N0.

• Too many macro
definitions: N1. The limit
is N0.

• Too many nesting levels
for control flow: N1. The
limit is N0.

2 Coding Rule Sets and Concepts

2-18

N. MISRA Definition Messages in report file Polyspace Specification

• Too many enumeration
constants: N1. The limit
is N0.

Language Extensions

N. MISRA Definition Messages in report file Polyspace Specification

2.1 Assembly language shall be
encapsulated and isolated.

Assembly language shall be
encapsulated and isolated.

No warnings if code is
encapsulated in asm
functions or in asm pragma
(only warning is given on
asm statements even if it is
encapsulated by a MACRO).

2.2 Source code shall only use /*
*/ style comments

C++ comments shall not be
used.

C++ comments are handled
as comments but lead to a
violation of this MISRA rule

Note: This rule cannot be
annotated in the source code.

2.3 The character sequence /*
shall not be used within a
comment

The character sequence /*
shall not appear within a
comment.

This rule violation is also
raised when the character
sequence /* inside a C++
comment.

Note: This rule cannot be
annotated in the source code.

Documentation

Rule MISRA Definition Messages in report file Polyspace Specification

3.4 All uses of the #pragma
directive shall be documented
and explained.

All uses of the #pragma
directive shall be
documented and explained.

To check this rule, the option
-allowed-pragmas must be
set to the list of pragmas that
are allowed in source files.
Warning if a pragma that
does not belong to the list is
found.

 MISRA C:2004 and MISRA AC AGC Coding Rules

2-19

Character Sets

N. MISRA Definition Messages in report file Polyspace Specification

4.1 Only those escape sequences
which are defined in the ISO
C standard shall be used.

\<character> is not an ISO
C escape sequence Only
those escape sequences
which are defined in the ISO
C standard shall be used.

4.2 Trigraphs shall not be used. Trigraphs shall not be used. Trigraphs are handled and
converted to the equivalent
character but lead to a
violation of the MISRA rule

Identifiers

N. MISRA Definition Messages in report file Polyspace Specification

5.1 Identifiers (internal and
external) shall not rely on the
significance of more than 31
characters

Identifier 'XX' should not
rely on the significance of
more than 31 characters.

All identifiers (global, static
and local) are checked.

5.2 Identifiers in an inner scope
shall not use the same name
as an identifier in an outer
scope, and therefore hide that
identifier.

• Local declaration of XX is
hiding another identifier.

• Declaration of parameter
XX is hiding another
identifier.

Assumes that rule 8.1 is not
violated.

5.3 A typedef name shall be a
unique identifier

{typedef name}'%s' should
not be reused. (already used
as {typedef name} at %s:%d)

Warning when a typedef
name is reused as another
identifier name.

5.4 A tag name shall be a unique
identifier

{tag name}'%s' should not be
reused. (already used as {tag
name} at %s:%d)

Warning when a tag name is
reused as another identifier
name

5.5 No object or function
identifier with a static
storage duration should be
reused.

{static identifier/parameter
name}’%s’ should not be
reused. (already used as
{static identifier/parameter
name} with static storage
duration at %s:%d)

Warning when a static
name is reused as another
identifier name

Bug Finder and Code Prover
check this coding rule

2 Coding Rule Sets and Concepts

2-20

N. MISRA Definition Messages in report file Polyspace Specification

differently. The analyses can
produce different results.

5.6 No identifier in one name
space should have the same
spelling as an identifier in
another name space, with the
exception of structure and
union member names.

{member name}'%s' should
not be reused. (already used
as {member name} at %s:%d)

Warning when an idf in
a namespace is reused in
another namespace

5.7 No identifier name should be
reused.

{identifier}'%s' should not
be reused. (already used as
{identifier} at %s:%d)

No violation reported when:

• Different functions have
parameters with the same
name

• Different functions have
local variables with the
same name

• A function has a local
variable that has the same
name as a parameter of
another function

Types

N. MISRA Definition Messages in report file Polyspace Specification

6.1 The plain char type shall be
used only for the storage and
use of character values

Only permissible operators
on plain chars are '=', '==' or
'!=' operators, explicit casts
to integral types and '?' (for
the 2nd and 3rd operands)

Warning when a plain char is
used with an operator other
than =, ==, !=, explicit casts
to integral types, or as the
second or third operands of
the ? operator.

6.2 Signed and unsigned char
type shall be used only for the
storage and use of numeric
values.

• Value of type plain char
is implicitly converted to
signed char.

• Value of type plain char
is implicitly converted to
unsigned char.

Warning if value of type plain
char is implicitly converted to
value of type signed char or
unsigned char.

 MISRA C:2004 and MISRA AC AGC Coding Rules

2-21

N. MISRA Definition Messages in report file Polyspace Specification

• Value of type signed char
is implicitly converted to
plain char.

• Value of type unsigned
char is implicitly
converted to plain char.

6.3 typedefs that indicate size
and signedness should be
used in place of the basic
types

typedefs that indicate size
and signedness should be
used in place of the basic
types.

No warning is given in
typedef definition.

6.4 Bit fields shall only be
defined to be of type unsigned
int or signed int.

Bit fields shall only be
defined to be of type
unsigned int or signed int.

6.5 Bit fields of type signed int
shall be at least 2 bits long.

Bit fields of type signed int
shall be at least 2 bits long.

No warning on anonymous
signed int bitfields of width
0 - Extended to all signed
bitfields of size <= 1 (if Rule
6.4 is violated).

Constants

N. MISRA Definition Messages in report file Polyspace Specification

7.1 Octal constants (other
than zero) and octal escape
sequences shall not be used.

• Octal constants other
than zero and octal
escape sequences shall
not be used.

• Octal constants (other
than zero) should not be
used.

• Octal escape sequences
should not be used.

2 Coding Rule Sets and Concepts

2-22

Declarations and Definitions

N. MISRA Definition Messages in report file Polyspace Specification

8.1 Functions shall have
prototype declarations
and the prototype shall be
visible at both the function
definition and call.

• Function XX has no
complete prototype
visible at call.

• Function XX has no
prototype visible at
definition.

Prototype visible at call must
be complete.

8.2 Whenever an object or
function is declared or
defined, its type shall be
explicitly stated

Whenever an object or
function is declared or
defined, its type shall be
explicitly stated.

8.3 For each function parameter
the type given in the
declaration and definition
shall be identical, and the
return types shall also be
identical.

Definition of function
'XX' incompatible with its
declaration.

Assumes that rule 8.1 is
not violated. The rule is
restricted to compatible
types. Can be turned to Off

8.4 If objects or functions are
declared more than once their
types shall be compatible.

• If objects or functions
are declared more than
once their types shall be
compatible.

• Global declaration
of 'XX' function has
incompatible type with
its definition.

• Global declaration
of 'XX' variable has
incompatible type with
its definition.

Violations of this rule might
be generated during the link
phase.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

8.5 There shall be no definitions
of objects or functions in a
header file

• Object 'XX' should not be
defined in a header file.

• Function 'XX' should not
be defined in a header
file.

Tentative of definitions are
considered as definitions.

 MISRA C:2004 and MISRA AC AGC Coding Rules

2-23

N. MISRA Definition Messages in report file Polyspace Specification

• Fragment of function
should not be defined in a
header file.

8.6 Functions shall always be
declared at file scope.

Function 'XX' should be
declared at file scope.

8.7 Objects shall be defined at
block scope if they are only
accessed from within a single
function

Object 'XX' should be
declared at block scope.

Restricted to static objects.

8.8 An external object or function
shall be declared in one file
and only one file

Function/Object 'XX' has
external declarations in
multiples files.

Restricted to explicit extern
declarations (tentative of
definitions are ignored).

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

8.9 Definition: An identifier
with external linkage shall
have exactly one external
definition.

• Procedure/Global
variable XX multiply
defined.

• Forbidden multiple
tentative of definition for
object XX

• Global variable has
multiples tentative of
definitions

• Undefined global
variable XX

Tentative of definitions are
considered as definitions,
no warning on predefined
symbols.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

8.10 All declarations and
definitions of objects or
functions at file scope shall
have internal linkage unless
external linkage is required

Function/Variable XX
should have internal
linkage.

Assumes that 8.1 is not
violated. No warning if 0
uses.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

2 Coding Rule Sets and Concepts

2-24

N. MISRA Definition Messages in report file Polyspace Specification

8.11 The static storage class
specifier shall be used in
definitions and declarations
of objects and functions that
have internal linkage

static storage class specifier
should be used on internal
linkage symbol XX.

8.12 When an array is declared
with external linkage, its
size shall be stated explicitly
or defined implicitly by
initialization

Size of array 'XX' should be
explicitly stated.

Initialization

N. MISRA Definition Messages in report file Polyspace Specification

9.1 All automatic variables shall
have been assigned a value
before being used.

 Checked during code
analysis.

Violations displayed as Non-
initialized variable results.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

9.2 Braces shall be used to
indicate and match the
structure in the nonzero
initialization of arrays and
structures.

Braces shall be used to
indicate and match the
structure in the nonzero
initialization of arrays and
structures.

9.3 In an enumerator list, the
= construct shall not be
used to explicitly initialize
members other than the first,
unless all items are explicitly
initialized.

In an enumerator list, the
= construct shall not be
used to explicitly initialize
members other than the
first, unless all items are
explicitly initialized.

 MISRA C:2004 and MISRA AC AGC Coding Rules

2-25

Arithmetic Type Conversion

N. MISRA Definition Messages in report file Polyspace Specification

10.1 The value of an expression
of integer type shall not be
implicitly converted to a
different underlying type if:

• it is not a conversion to a
wider integer type of the
same signedness, or

• the expression is complex,
or

• the expression is not
constant and is a function
argument, or

• the expression is not
constant and is a return
expression

• Implicit conversion of the
expression of underlying
type XX to the type
XX that is not a wider
integer type of the same
signedness.

• Implicit conversion of one
of the binary operands
whose underlying types
are XX and XX

• Implicit conversion of
the binary right hand
operand of underlying
type XX to XX that is not
an integer type.

• Implicit conversion of the
binary left hand operand
of underlying type XX to
XX that is not an integer
type.

ANSI C base types order
(signed char, short, int, long)
defines that T2 is wider than
T1 if T2 is on the right hand
of T1 or T2 = T1. The same
interpretation is applied on
the unsigned version of base
types.

An expression of bool or
enum types has int as
underlying type.

Plain char may have signed
or unsigned underlying type
(depending on Polyspace
target configuration or option
setting).

The underlying type of
a simple expression of
struct.bitfield is the base type
used in the bitfield definition,
the bitfield width is not token
into account and it assumes
that only signed | unsigned
int are used for bitfield (Rule
6.4).

10.1
(cont)

 • Implicit conversion of
the binary right hand
operand of underlying
type XX to XX that is not
a wider integer type of
the same signedness or
Implicit conversion of
the binary ? left hand
operand of underlying

No violation reported when:

• The implicit conversion is
a type widening, without
change of signedness if
integer

• The expression is an
argument expression or a
return expression

2 Coding Rule Sets and Concepts

2-26

N. MISRA Definition Messages in report file Polyspace Specification

type XX to XX, but it is a
complex expression.

• Implicit conversion
of complex integer
expression of underlying
type XX to XX.

• Implicit conversion of
non-constant integer
expression of underlying
type XX in function
return whose expected
type is XX.

• Implicit conversion of
non-constant integer
expression of underlying
type XX as argument
of function whose
corresponding parameter
type is XX.

No violation reported when
the following are all true:

• Implicit conversion
applies to a constant
expression and is a type
widening, with a possible
change of signedness if
integer

• The conversion does not
change the representation
of the constant value or
the result of the operation

• The expression is an
argument expression or
a return expression or an
operand expression of a
non-bitwise operator

 MISRA C:2004 and MISRA AC AGC Coding Rules

2-27

N. MISRA Definition Messages in report file Polyspace Specification

10.2 The value of an expression
of floating type shall not
be implicitly converted to a
different type if

• it is not a conversion to a
wider floating type, or

• the expression is complex,
or

• the expression is a
function argument, or

• the expression is a return
expression

• Implicit conversion of the
expression from XX to
XX that is not a wider
floating type.

• Implicit conversion of
the binary ? right hand
operand from XX to
XX, but it is a complex
expression.

• Implicit conversion of
the binary ? right hand
operand from XX to
XX that is not a wider
floating type or Implicit
conversion of the binary ?
left hand operand from
XX to XX, but it is a
complex expression.

• Implicit conversion
of complex floating
expression from XX to
XX.

• Implicit conversion of
floating expression of XX
type in function return
whose expected type is
XX.

• Implicit conversion of
floating expression of
XX type as argument
of function whose
corresponding parameter
type is XX.

ANSI C base types order
(float, double) defines that T2
is wider than T1 if T2 is on
the right hand of T1 or T2 =
T1.

No violation reported when:

• The implicit conversion is
a type widening

• The expression is an
argument expression or a
return expression.

2 Coding Rule Sets and Concepts

2-28

N. MISRA Definition Messages in report file Polyspace Specification

10.3 The value of a complex
expression of integer type
may only be cast to a type
that is narrower and of
the same signedness as
the underlying type of the
expression

Complex expression of
underlying type XX may
only be cast to narrower
integer type of same
signedness, however the
destination type is XX.

• ANSI C base types order
(signed char, short, int,
long) defines that T1 is
narrower than T2 if T2
is on the right hand of
T1 or T1 = T2. The same
methodology is applied on
the unsigned version of
base types.

• An expression of bool or
enum types has int as
underlying type.

• Plain char may have
signed or unsigned
underlying type
(depending on target
configuration or option
setting).

• The underlying type of
a simple expression of
struct.bitfield is the base
type used in the bitfield
definition, the bitfield
width is not token into
account and it assumes
that only signed, unsigned
int are used for bitfield
(Rule 6.4).

10.4 The value of a complex
expression of float type may
only be cast to narrower
floating type

Complex expression of XX
type may only be cast to
narrower floating type,
however the destination
type is XX.

ANSI C base types order
(float, double) defines that T1
is narrower than T2 if T2 is
on the right hand of T1 or T2
= T1.

 MISRA C:2004 and MISRA AC AGC Coding Rules

2-29

N. MISRA Definition Messages in report file Polyspace Specification

10.5 If the bitwise operator ~ and
<< are applied to an operand
of underlying type unsigned
char or unsigned short, the
result shall be immediately
cast to the underlying type of
the operand

Bitwise [<<|~] is applied to
the operand of underlying
type [unsigned char|
unsigned short], the result
shall be immediately cast to
the underlying type.

10.6 The “U” suffix shall be
applied to all constants of
unsigned types

No explicit 'U suffix on
constants of an unsigned
type.

 Warning when the type
determined from the value
and the base (octal, decimal
or hexadecimal) is unsigned
and there is no suffix u or U.

For example, when the size of
the int and long int data
types is 32 bits, the coding
rule checker will report a
violation of rule 10.6 for the
following line:

int a = 2147483648;

There is a difference between
decimal and hexadecimal
constants when int and
long int are not the same
size.

Pointer Type Conversion

N. MISRA Definition Messages in report file Polyspace Specification

11.1 Conversion shall not be
performed between a pointer
to a function and any type
other than an integral type

Conversion shall not be
performed between a pointer
to a function and any type
other than an integral type.

Casts and implicit
conversions involving a
function pointer.

Casts or implicit conversions
from NULL or (void*)0 do
not give any warning.

2 Coding Rule Sets and Concepts

2-30

N. MISRA Definition Messages in report file Polyspace Specification

11.2 Conversion shall not be
performed between a pointer
to an object and any type
other than an integral type,
another pointer to a object
type or a pointer to void

Conversion shall not be
performed between a pointer
to an object and any type
other than an integral type,
another pointer to a object
type or a pointer to void.

There is also a warning on
qualifier loss

11.3 A cast should not be
performed between a pointer
type and an integral type

A cast should not be
performed between a pointer
type and an integral type.

Exception on zero constant.
Extended to all conversions

11.4 A cast should not be
performed between a pointer
to object type and a different
pointer to object type.

A cast should not be
performed between a pointer
to object type and a different
pointer to object type.

11.5 A cast shall not be performed
that removes any const or
volatile qualification from the
type addressed by a pointer

A cast shall not be
performed that removes any
const or volatile qualification
from the type addressed by a
pointer

Extended to all conversions

Expressions

N. MISRA Definition Messages in report file Polyspace Specification

12.1 Limited dependence
should be placed on C's
operator precedence rules in
expressions

Limited dependence
should be placed on C's
operator precedence rules in
expressions

12.2 The value of an expression
shall be the same under any
order of evaluation that the
standard permits.

• The value of 'sym'
depends on the order of
evaluation.

• The value of volatile
'sym' depends on the
order of evaluation
because of multiple
accesses.

The expression is a simple
expression of symbols (Unlike
i = i++; no detection on tab[2]
= tab[2]++;). Rule 12.2 check
assumes that no assignment
in expressions that yield a
Boolean values (rule 13.1)
and the comma operator is
not used (rule 12.10).

 MISRA C:2004 and MISRA AC AGC Coding Rules

2-31

N. MISRA Definition Messages in report file Polyspace Specification

12.3 The sizeof operator should
not be used on expressions
that contain side effects.

The sizeof operator should
not be used on expressions
that contain side effects.

No warning on volatile
accesses

12.4 The right hand operand of
a logical && or || operator
shall not contain side effects.

The right hand operand of
a logical && or || operator
shall not contain side effects.

No warning on volatile
accesses

12.5 The operands of a logical
&& or || shall be primary-
expressions.

• operand of logical && is
not a primary expression

• operand of logical || is
not a primary expression

• The operands of a
logical && or || shall be
primary-expressions.

During preprocessing,
violations of this rule are
detected on the expressions
in #if directives.

Allowed exception on
associatively (a && b && c),
(a || b || c).

2 Coding Rule Sets and Concepts

2-32

N. MISRA Definition Messages in report file Polyspace Specification

12.6 Operands of logical operators
(&&, || and !) should
be effectively Boolean.
Expression that are
effectively Boolean should
not be used as operands to
operators other than (&&, ||
or !).

• Operand of '!' logical
operator should be
effectively Boolean.

• Left operand of '%s'
logical operator should be
effectively Boolean.

• Right operand of '%s'
logical operator should be
effectively Boolean.

• %s operand of '%s' is
effectively Boolean.
Boolean should not be
used as operands to
operators other than
'&&', '||', '!', '=', '==', '!='
and '?:'.

The operand of a logical
operator should be a Boolean
data type. Although the C
standard does not explicitly
define the Boolean data
type, the standard implicitly
assumes the use of the
Boolean data type.

Some operators may return
Boolean-like expressions, for
example, (var == 0).

Consider the following code:

unsigned char flag;

if (!flag)

The rule checker reports a
violation of rule 12.6:

Operand of '!' logical

operator should be

effectively Boolean.

The operand flag is not a
Boolean but an unsigned
char.

To be compliant with rule
12.6, the code must be
rewritten either as

if (!(flag != 0))

or

if (flag == 0)

The use of the option -
boolean-types may
increase or decrease the

 MISRA C:2004 and MISRA AC AGC Coding Rules

2-33

N. MISRA Definition Messages in report file Polyspace Specification

number of warnings
generated.

12.7 Bitwise operators shall not
be applied to operands whose
underlying type is signed

• [~/Left Shift/Right shift/
&] operator applied on
an expression whose
underlying type is
signed.

• Bitwise ~ on operand of
signed underlying type
XX.

• Bitwise [<<|>>] on left
hand operand of signed
underlying type XX.

• Bitwise [& | ^] on two
operands of s

The underlying type for an
integer is signed when:

• it does not have a u or U
suffix

• it is small enough to
fit into a 64 bits signed
number

12.8 The right hand operand of
a shift operator shall lie
between zero and one less
than the width in bits of the
underlying type of the left
hand operand.

• shift amount is negative
• shift amount is bigger

than 64
• Bitwise [<< >>] count out

of range [0 ..X] (width of
the underlying type XX
of the left hand operand -
1)..

The numbers that are
manipulated in preprocessing
directives are 64 bits wide
so that valid shift range is
between 0 and 63

Check is also extended onto
bitfields with the field width
or the width of the base type
when it is within a complex
expression

12.9 The unary minus operator
shall not be applied to an
expression whose underlying
type is unsigned.

• Unary - on operand of
unsigned underlying type
XX.

• Minus operator applied
to an expression whose
underlying type is
unsigned

The underlying type for an
integer is signed when:

• it does not have a u or U
suffix

• it is small enough to
fit into a 64 bits signed
number

12.10 The comma operator shall not
be used.

The comma operator shall
not be used.

2 Coding Rule Sets and Concepts

2-34

N. MISRA Definition Messages in report file Polyspace Specification

12.11 Evaluation of constant
unsigned expression should
not lead to wraparound.

Evaluation of constant
unsigned integer
expressions should not lead
to wrap-around.

12.12 The underlying bit
representations of floating-
point values shall not be
used.

The underlying bit
representations of floating-
point values shall not be
used.

Warning when:

• A float pointer is cast
as a pointer to another
data type. Casting a float
pointer as a pointer to
void does not generate a
warning.

• A float is packed with
another data type. For
example:

union {

 float f;

 int i;

} …

12.13 The increment (++) and
decrement (--) operators
should not be mixed with
other operators in an
expression

The increment (++) and
decrement (--) operators
should not be mixed with
other operators in an
expression

Warning when ++ or --
operators are not used alone.

Control Statement Expressions

N. MISRA Definition Messages in report file Polyspace Specification

13.1 Assignment operators shall
not be used in expressions
that yield Boolean values.

Assignment operators shall
not be used in expressions
that yield Boolean values.

13.2 Tests of a value against zero
should be made explicit,
unless the operand is
effectively Boolean

Tests of a value against zero
should be made explicit,
unless the operand is
effectively Boolean

No warning is given on
integer constants. Example: if
(2)

The use of the option -
boolean-types may

 MISRA C:2004 and MISRA AC AGC Coding Rules

2-35

N. MISRA Definition Messages in report file Polyspace Specification

increase or decrease the
number of warnings
generated.

13.3 Floating-point expressions
shall not be tested for
equality or inequality.

Floating-point expressions
shall not be tested for
equality or inequality.

Warning on directs tests only.

13.4 The controlling expression
of a for statement shall not
contain any objects of floating
type

The controlling expression
of a for statement shall
not contain any objects of
floating type

If for index is a variable
symbol, checked that it is not
a float.

2 Coding Rule Sets and Concepts

2-36

N. MISRA Definition Messages in report file Polyspace Specification

13.5 The three expressions of a for
statement shall be concerned
only with loop control

• 1st expression should be
an assignment.

• Bad type for loop counter
(XX).

• 2nd expression should be
a comparison.

• 2nd expression should be
a comparison with loop
counter (XX).

• 3rd expression should
be an assignment of loop
counter (XX).

• 3rd expression: assigned
variable should be the
loop counter (XX).

• The following kinds of for
loops are allowed:

(a) all three expressions
shall be present;

(b) the 2nd and 3rd
expressions shall be
present with prior
initialization of the loop
counter;

(c) all three expressions
shall be empty for a
deliberate infinite loop.

Checked if the for loop
index (V) is a variable
symbol; checked if V is
the last assigned variable
in the first expression (if
present). Checked if, in first
expression, if present, is
assignment of V; checked if
in 2nd expression, if present,
must be a comparison of V;
Checked if in 3rd expression,
if present, must be an
assignment of V.

13.6 Numeric variables being
used within a for loop for
iteration counting should not
be modified in the body of the
loop.

Numeric variables being
used within a for loop for
iteration counting should
not be modified in the body
of the loop.

Detect only direct
assignments if the for loop
index is known and if it is a
variable symbol.

 MISRA C:2004 and MISRA AC AGC Coding Rules

2-37

N. MISRA Definition Messages in report file Polyspace Specification

13.7 Boolean operations whose
results are invariant shall not
be permitted

• Boolean operations
whose results are
invariant shall not be
permitted. Expression is
always true.

• Boolean operations
whose results are
invariant shall not be
permitted. Expression is
always false.

• Boolean operations
whose results are
invariant shall not be
permitted.

During compilation, check
comparisons with at least one
constant operand.

Control Flow

N. MISRA Definition Messages in report file Polyspace Specification

14.1 There shall be no
unreachable code.

There shall be no
unreachable code.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

14.2 All non-null statements shall
either have at lest one side
effect however executed, or
cause control flow to change

• All non-null statements
shall either:

• have at lest one side
effect however executed,
or

• cause control flow to
change

14.3 All non-null statements shall
either

• have at lest one side effect
however executed, or

• cause control flow to
change

A null statement shall
appear on a line by itself

We assume that a ';' is a
null statement when it is
the first character on a line
(excluding comments). The
rule is violated when:

2 Coding Rule Sets and Concepts

2-38

N. MISRA Definition Messages in report file Polyspace Specification

• there are some comments
before it on the same line.

• there is a comment
immediately after it

• there is something else
than a comment after the
';' on the same line.

14.4 The goto statement shall not
be used.

The goto statement shall not
be used.

14.5 The continue statement shall
not be used.

The continue statement
shall not be used.

14.6 For any iteration statement
there shall be at most one
break statement used for loop
termination

For any iteration statement
there shall be at most one
break statement used for
loop termination

14.7 A function shall have a single
point of exit at the end of the
function

A function shall have a
single point of exit at the
end of the function

14.8 The statement forming the
body of a switch, while, do
while or for statement shall
be a compound statement

• The body of a do while
statement shall be a
compound statement.

• The body of a for
statement shall be a
compound statement.

• The body of a switch
statement shall be a
compound statement

 MISRA C:2004 and MISRA AC AGC Coding Rules

2-39

N. MISRA Definition Messages in report file Polyspace Specification

14.9 An if (expression) construct
shall be followed by a
compound statement. The
else keyword shall be followed
by either a compound
statement, or another if
statement

• An if (expression)
construct shall be
followed by a compound
statement.

• The else keyword shall
be followed by either a
compound statement, or
another if statement

14.10 All if else if constructs should
contain a final else clause.

All if else if constructs
should contain a final else
clause.

Switch Statements

N. MISRA Definition Messages in report file Polyspace Specification

15.0 Unreachable code is detected
between switch statement
and first case.

Note: This is not a MISRA
C2004 rule.

switch statements syntax
normative restrictions.

Warning on declarations or
any statements before the
first switch case.

Warning on label or jump
statements in the body of
switch cases.

On the following example, the
rule is displayed in the log
file at line 3:

1 ...

2 switch(index) {

3 var = var + 1;

// RULE 15.0

// violated

4case 1: ...

The code between switch
statement and first case
is checked as dead code by
Polyspace. It follows ANSI
standard behavior.

2 Coding Rule Sets and Concepts

2-40

N. MISRA Definition Messages in report file Polyspace Specification

15.1 A switch label shall only
be used when the most
closely-enclosing compound
statement is the body of a
switch statement

A switch label shall only
be used when the most
closely-enclosing compound
statement is the body of a
switch statement

15.2 An unconditional break
statement shall terminate
every non-empty switch
clause

An unconditional break
statement shall terminate
every non-empty switch
clause

Warning for each non-
compliant case clause.

15.3 The final clause of a switch
statement shall be the default
clause

The final clause of a switch
statement shall be the
default clause

15.4 A switch expression should
not represent a value that is
effectively Boolean

A switch expression should
not represent a value that is
effectively Boolean

The use of the option -
boolean-types may
increase the number of
warnings generated.

15.5 Every switch statement shall
have at least one case clause

Every switch statement
shall have at least one case
clause

Functions

N. MISRA Definition Messages in report file Polyspace Specification

16.1 Functions shall not be
defined with variable
numbers of arguments.

Function XX should not be
defined as varargs.

16.2 Functions shall not call
themselves, either directly or
indirectly.

Function %s should not call
itself.

Done by Polyspace software
(Use the call graph in
Polyspace Code Prover).
Polyspace also partially
checks this rule during the
compilation phase.

16.3 Identifiers shall be given
for all of the parameters
in a function prototype
declaration.

Identifiers shall be given
for all of the parameters
in a function prototype
declaration.

Assumes Rule 8.6 is not
violated.

 MISRA C:2004 and MISRA AC AGC Coding Rules

2-41

N. MISRA Definition Messages in report file Polyspace Specification

16.4 The identifiers used in the
declaration and definition of
a function shall be identical.

The identifiers used in the
declaration and definition of
a function shall be identical.

Assumes that rules 8.8, 8.1
and 16.3 are not violated.

All occurrences are detected.
16.5 Functions with no

parameters shall be declared
with parameter type void.

Functions with no
parameters shall be declared
with parameter type void.

Definitions are also checked.

16.6 The number of arguments
passed to a function shall
match the number of
parameters.

• Too many arguments to
XX.

• Insufficient number of
arguments to XX.

Assumes that rule 8.1 is not
violated.

16.7 A pointer parameter in a
function prototype should be
declared as pointer to const
if the pointer is not used to
modify the addressed object.

Pointer parameter in a
function prototype should be
declared as pointer to const
if the pointer is not used to
modify the addressed object.

Warning if a non-const
pointer parameter is either
not used to modify the
addressed object or is passed
to a call of a function that
is declared with a const
pointer parameter.

16.8 All exit paths from a function
with non-void return type
shall have an explicit
return statement with an
expression.

Missing return value for
non-void function XX.

Warning when a non-void
function is not terminated
with an unconditional return
with an expression.

16.9 A function identifier shall
only be used with either
a preceding &, or with a
parenthesized parameter list,
which may be empty.

Function identifier XX
should be preceded by a & or
followed by a parameter list.

2 Coding Rule Sets and Concepts

2-42

N. MISRA Definition Messages in report file Polyspace Specification

16.10 If a function returns error
information, then that error
information shall be tested.

If a function returns error
information, then that error
information shall be tested.

Warning if a non-void
function is called and the
returned value is ignored.

No warning if the result of
the call is cast to void.

No check performed for
calls of memcpy, memmove,
memset, strcpy, strncpy,
strcat, or strncat.

Pointers and Arrays

N. MISRA Definition Messages in report file Polyspace Specification

17.1 Pointer arithmetic shall only
be applied to pointers that
address an array or array
element.

Pointer arithmetic shall only
be applied to pointers that
address an array or array
element.

17.2 Pointer subtraction shall only
be applied to pointers that
address elements of the same
array

Pointer subtraction shall
only be applied to pointers
that address elements of the
same array.

17.3 >, >=, <, <= shall not be
applied to pointer types
except where they point to
the same array.

>, >=, <, <= shall not be
applied to pointer types
except where they point to
the same array.

17.4 Array indexing shall be the
only allowed form of pointer
arithmetic.

Array indexing shall be the
only allowed form of pointer
arithmetic.

Warning on operations on
pointers. (p+I, I+p and p-I,
where p is a pointer and I an
integer).

17.5 A type should not contain
more than 2 levels of pointer
indirection

A type should not contain
more than 2 levels of pointer
indirection

17.6 The address of an object with
automatic storage shall not

Pointer to a parameter is an
illegal return value. Pointer

Warning when assigning
address to a global variable,

 MISRA C:2004 and MISRA AC AGC Coding Rules

2-43

N. MISRA Definition Messages in report file Polyspace Specification

be assigned to an object that
may persist after the object
has ceased to exist.

to a local is an illegal return
value.

returning a local variable
address, or returning a
parameter address.

Structures and Unions

N. MISRA Definition Messages in report file Polyspace Specification

18.1 All structure or union types
shall be complete at the end
of a translation unit.

All structure or union types
shall be complete at the end
of a translation unit.

Warning for all incomplete
declarations of structs or
unions.

18.2 An object shall not be
assigned to an overlapping
object.

• An object shall not
be assigned to an
overlapping object.

• Destination and source of
XX overlap, the behavior
is undefined.

18.4 Unions shall not be used Unions shall not be used.

Preprocessing Directives

N. MISRA Definition Messages in report file Polyspace Specification

19.1 #include statements in a file
shall only be preceded by
other preprocessors directives
or comments

#include statements in a
file shall only be preceded
by other preprocessors
directives or comments

A message is displayed
when a #include directive
is preceded by other things
than preprocessor directives,
comments, spaces or “new
lines”.

19.2 Nonstandard characters
should not occur in header
file names in #include
directives

• A message is displayed
on characters ', " or /
* between < and > in
#include <filename>

• A message is displayed
on characters ', or /
* between " and " in
#include "filename"

2 Coding Rule Sets and Concepts

2-44

N. MISRA Definition Messages in report file Polyspace Specification

19.3 The #include directive shall
be followed by either a
<filename> or "filename"
sequence.

• '#include' expects
"FILENAME" or
<FILENAME>

• '#include_next' expects
"FILENAME" or
<FILENAME>

19.4 C macros shall only expand
to a braced initializer, a
constant, a parenthesized
expression, a type qualifier,
a storage class specifier, or a
do-while-zero construct.

Macro '<name>' does not
expand to a compliant
construct.

We assume that a macro
definition does not violate
this rule when it expands to:

• a braced construct (not
necessarily an initializer)

• a parenthesized construct
(not necessarily an
expression)

• a number
• a character constant
• a string constant (can

be the result of the
concatenation of string
field arguments and
literal strings)

• the following keywords:
typedef, extern, static,
auto, register, const,
volatile, __asm__ and
__inline__

• a do-while-zero construct
19.5 Macros shall not be #defined

and #undefd within a block.
• Macros shall not be

#define’d within a
block.

• Macros shall not be
#undef’d within a block.

19.6 #undef shall not be used. #undef shall not be used.

 MISRA C:2004 and MISRA AC AGC Coding Rules

2-45

N. MISRA Definition Messages in report file Polyspace Specification

19.7 A function should be used in
preference to a function like-
macro.

A function should be used in
preference to a function like-
macro

Message on all function-like
macro definitions.

19.8 A function-like macro shall
not be invoked without all of
its arguments

• arguments given to
macro '<name>'

• macro '<name>' used
without args.

• macro '<name>' used
with just one arg.

• macro '<name>'
used with too many
(<number>) args.

19.9 Arguments to a function-
like macro shall not contain
tokens that look like
preprocessing directives.

Macro argument shall not
look like a preprocessing
directive.

This rule is detected as
violated when the '#'
character appears in a macro
argument (outside a string or
character constant)

19.10 In the definition of a
function-like macro each
instance of a parameter shall
be enclosed in parentheses
unless it is used as the
operand of # or ##.

Parameter instance shall be
enclosed in parentheses.

If x is a macro parameter,
the following instances of x
as an operand of the # and ##
operators do not generate a
warning: #x, ##x, and x##.
Otherwise, parentheses are
required around x.

The software does not
generate a warning if a
parameter is reused as
an argument of a function
or function-like macro.
For example, consider a
parameter x. The software
does not generate a warning
if x appears as (x) or (x, or
,x) or ,x,.

2 Coding Rule Sets and Concepts

2-46

N. MISRA Definition Messages in report file Polyspace Specification

19.11 All macro identifiers in
preprocessor directives
shall be defined before use,
except in #ifdef and #ifndef
preprocessor directives and
the defined() operator.

'<name>' is not defined.

19.12 There shall be at most one
occurrence of the # or ##
preprocessor operators in a
single macro definition.

More than one occurrence
of the # or ## preprocessor
operators.

19.13 The # and ## preprocessor
operators should not be used

Message on definitions
of macros using # or ##
operators

19.14 The defined preprocessor
operator shall only be used
in one of the two standard
forms.

'defined' without an
identifier.

19.15 Precautions shall be taken
in order to prevent the
contents of a header file being
included twice.

Precautions shall be taken
in order to prevent multiple
inclusions.

When a header file is
formatted as,

#ifndef <control macro>

#define <control macro>

<contents> #endif

or,

#ifndef <control macro>

#error ...

#else

#define <control macro>

<contents> #endif

it is assumed that
precautions have been
taken to prevent multiple
inclusions. Otherwise, a
violation of this MISRA rule
is detected.

 MISRA C:2004 and MISRA AC AGC Coding Rules

2-47

N. MISRA Definition Messages in report file Polyspace Specification

19.16 Preprocessing directives shall
be syntactically meaningful
even when excluded by the
preprocessor.

directive is not syntactically
meaningful.

19.17 All #else, #elif and #endif
preprocessor directives shall
reside in the same file as the
#if or #ifdef directive to which
they are related.

• '#elif' not within a
conditional.

• '#else' not within a
conditional.

• '#elif' not within a
conditional.

• '#endif' not within a
conditional.

• unbalanced '#endif'.
• unterminated '#if'

conditional.
• unterminated '#ifdef'

conditional.
• unterminated '#ifndef'

conditional.

Standard Libraries

N. MISRA Definition Messages in report file Polyspace Specification

20.1 Reserved identifiers, macros
and functions in the standard
library, shall not be defined,
redefined or undefined.

• The macro '<name> shall
not be redefined.

• The macro '<name> shall
not be undefined.

20.2 The names of standard
library macros, objects and
functions shall not be reused.

Identifier XX should not be
used.

In case a macro whose name
corresponds to a standard
library macro, object or
function is defined, the rule
that is detected as violated is
20.1. Tentative of definitions
are considered as definitions.

2 Coding Rule Sets and Concepts

2-48

N. MISRA Definition Messages in report file Polyspace Specification

20.3 The validity of values passed
to library functions shall be
checked.

Validity of values passed to
library functions shall be
checked

Warning for argument in
library function call if the
following are all true:

• Argument is a local
variable

• Local variable is not
tested between last
assignment and call to the
library function

• Library function is a
common mathematical
function

• Corresponding parameter
of the library function has
a restricted input domain.

The library function can be
one of the following : sqrt,
tan, pow, log, log10, fmod,
acos, asin, acosh, atanh,
or atan2.

20.4 Dynamic heap memory
allocation shall not be used.

• The macro '<name> shall
not be used.

• Identifier XX should not
be used.

In case the dynamic heap
memory allocation functions
are actually macros and the
macro is expanded in the
code, this rule is detected as
violated. Assumes rule 20.2 is
not violated.

20.5 The error indicator errno
shall not be used

The error indicator errno
shall not be used

Assumes that rule 20.2 is not
violated

20.6 The macro offsetof, in library
<stddef.h>, shall not be used.

• The macro '<name> shall
not be used.

• Identifier XX should not
be used.

Assumes that rule 20.2 is not
violated

 MISRA C:2004 and MISRA AC AGC Coding Rules

2-49

N. MISRA Definition Messages in report file Polyspace Specification

20.7 The setjmp macro and the
longjmp function shall not be
used.

• The macro '<name> shall
not be used.

• Identifier XX should not
be used.

In case the longjmp function
is actually a macro and the
macro is expanded in the
code, this rule is detected as
violated. Assumes that rule
20.2 is not violated

20.8 The signal handling facilities
of <signal.h> shall not be
used.

• The macro '<name> shall
not be used.

• Identifier XX should not
be used.

In case some of the signal
functions are actually macros
and are expanded in the
code, this rule is detected as
violated. Assumes that rule
20.2 is not violated

20.9 The input/output library
<stdio.h> shall not be used in
production code.

• The macro '<name> shall
not be used.

• Identifier XX should not
be used.

In case the input/output
library functions are actually
macros and are expanded in
the code, this rule is detected
as violated. Assumes that
rule 20.2 is not violated

20.10 The library functions atof,
atoi and toll from library
<stdlib.h> shall not be used.

• The macro '<name> shall
not be used.

• Identifier XX should not
be used.

In case the atof, atoi and atoll
functions are actually macros
and are expanded, this rule is
detected as violated. Assumes
that rule 20.2 is not violated

20.11 The library functions abort,
exit, getenv and system from
library <stdlib.h> shall not be
used.

• The macro '<name> shall
not be used.

• Identifier XX should not
be used.

In case the abort, exit,
getenv and system functions
are actually macros and
are expanded, this rule is
detected as violated. Assumes
that rule 20.2 is not violated

20.12 The time handling functions
of library <time.h> shall not
be used.

• The macro '<name> shall
not be used.

• Identifier XX should not
be used.

In case the time handling
functions are actually macros
and are expanded, this rule is
detected as violated. Assumes
that rule 20.2 is not violated

2 Coding Rule Sets and Concepts

2-50

Runtime Failures

N. MISRA Definition Messages in report file Polyspace Specification

21.1 Minimization of runtime
failures shall be ensured by
the use of at least one of:

• static verification tools/
techniques;

• dynamic verification tools/
techniques;

• explicit coding of checks to
handle runtime faults.

 Done by Polyspace. Bug
Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

Unsupported MISRA C:2004 and MISRA AC AGC Rules

The Polyspace coding rules checker does not check the following MISRA C:2004 coding
rules. These rules cannot be enforced because they are outside the scope of Polyspace
software. They may concern documentation, dynamic aspects, or functional aspects of
MISRA rules. The “Polyspace Specification” column describes the reason each rule is
not checked.

Environment

Rule Description Polyspace Specification

1.2 (Required) No reliance shall be placed on
undefined or unspecified behavior

Not statically checkable unless the data
dynamic properties is taken into account

1.3 (Required) Multiple compilers and/or languages
shall only be used if there is a common
defined interface standard for object
code to which the language/compilers/
assemblers conform.

It is a process rule method.

1.4 (Required) The compiler/linker/Identifiers
(internal and external) shall not rely on
significance of more than 31 characters.
Furthermore the compiler/linker shall
be checked to ensure that 31 character

The documentation of compiler must be
checked.

 MISRA C:2004 and MISRA AC AGC Coding Rules

2-51

Rule Description Polyspace Specification

significance and case sensitivity are
supported for external identifiers.

1.5 (Advisory) Floating point implementations should
comply with a defined floating point
standard.

The documentation of compiler must be
checked as this implementation is done
by the compiler

Language Extensions

Rule Description Polyspace Specification

2.4 (Advisory) Sections of code should not be
“commented out”

It might be some pseudo code or code
that does not compile inside a comment.

Documentation

Rule Description Polyspace Specification

3.1 (Required) All usage of implementation-defined
behavior shall be documented.

The documentation of compiler must
be checked. Error detection is based on
undefined behavior, according to choices
made for implementation- defined
constructions. Documentation can not be
checked.

3.2 (Required) The character set and the
corresponding encoding shall be
documented.

The documentation of compiler must be
checked.

3.3 (Advisory) The implementation of integer division
in the chosen compiler should be
determined, documented and taken into
account.

The documentation of compiler must be
checked.

3.5 (Required) The implementation-defined behavior
and packing of bitfields shall be
documented if being relied upon.

The documentation of compiler must be
checked.

3.6 (Required) All libraries used in production code
shall be written to comply with the
provisions of this document, and shall
have been subject to appropriate
validation.

The documentation of compiler must be
checked.

2 Coding Rule Sets and Concepts

2-52

Structures and Unions

Rule Description Polyspace Specification

18.3 (Required) An area of memory shall not be reused
for unrelated purposes.

"purpose" is functional design issue.

 Polyspace MISRA C:2012 Checker

2-53

Polyspace MISRA C:2012 Checker

The Polyspace MISRA C:2012 checker helps you to comply with the MISRA C 2012
coding standard.3

When MISRA C:2012 guidelines are violated, the Polyspace MISRA C:2012 checker
provides messages with information about the violated rule or directive. Most violations
are found during the compile phase of an analysis.

The checker can check 138 of the 159 MISRA C:2012 guidelines.

Each guideline is categorized into one of these three categories: mandatory, required,
or advisory. When you set up rule checking, you can select subsets of these categories
to check. For automatically generated code, some rules change categories, including to
one additional category: readability. The “Use generated code requirements (C)” option
activates the categorization for automatically generated code.

There are additional subsets of MISRA C:2012 guidelines defined by Polyspace called
Software Quality Objectives (SQO) that can have a direct or indirect impact on the
precision of your results. When you set up checking, you can select these subsets. These
subsets are defined in “Software Quality Objective Subsets (C:2012)” on page 2-54.

See Also
“Check MISRA C:2012” | “Use generated code requirements (C)”

Related Examples
• “Activate Coding Rules Checker” on page 3-2
• “Set Up Coding Rules Checking”

More About
• “MISRA C:2012 Directives and Rules”
• “Software Quality Objective Subsets (C:2012)” on page 2-54

3. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the MISRA
Consortium.

2 Coding Rule Sets and Concepts

2-54

Software Quality Objective Subsets (C:2012)

In this section...

“Guidelines in SQO-Subset1” on page 2-54
“Guidelines in SQO-Subset2” on page 2-55

These subsets of MISRA C:2012 guidelines can have a direct or indirect impact on the
precision of your Polyspace results. When you set up coding rules checking, you can select
these subsets.

Guidelines in SQO-Subset1

Rule Description

8.8 The static storage class specifier shall be used in all declarations of
objects and functions that have internal linkage

8.11 When an array with external linkage is declared, its size should be
explicitly specified

8.13 A pointer should point to a const-qualified type whenever possible
11.1 Conversions shall not be performed between a pointer to a function and

any other type
11.2 Conversions shall not be performed between a pointer to an incomplete

type and any other type
11.4 A conversion should not be performed between a pointer to object and

an integer type
11.5 A conversion should not be performed from pointer to void into pointer

to object
11.6 A cast shall not be performed between pointer to void and an arithmetic

type
11.7 A cast shall not be performed between pointer to object and a non-

integer arithmetic type
14.1 A loop counter shall not have essentially floating type
14.2 A for loop shall be well-formed
15.1 The goto statement should not be used

 Software Quality Objective Subsets (C:2012)

2-55

Rule Description

15.2 The goto statement shall jump to a label declared later in the same
function

15.3 Any label referenced by a goto statement shall be declared in the same
block, or in any block enclosing the goto statement

15.5 A function should have a single point of exit at the end
17.1 The features of <starg.h> shall not be used
17.2 Functions shall not call themselves, either directly or indirectly
18.3 The relational operators >, >=, < and <= shall not be applied to objects

of pointer type except where they point into the same object
18.4 The +, -, += and -= operators should not be applied to an expression of

pointer type
18.5 Declarations should contain no more than two levels of pointer nesting
18.6 The address of an object with automatic storage shall not be copied to

another object that persists after the first object has ceased to exist
19.2 The union keyword should not be used
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not

be used

Guidelines in SQO-Subset2

Good design practices generally lead to less code complexity, which can reduce the
number of unproven results in Polyspace Code Prover. The following set of coding
rules enforce good design practices. The SQO-subset2 option checks the rules in SQO-
subset1 and some additional rules.

Rule Description

8.8 The static storage class specifier shall be used in all declarations of
objects and functions that have internal linkage

8.11 When an array with external linkage is declared, its size should be
explicitly specified

8.13 A pointer should point to a const-qualified type whenever possible
11.1 Conversions shall not be performed between a pointer to a function and

any other type

2 Coding Rule Sets and Concepts

2-56

Rule Description

11.2 Conversions shall not be performed between a pointer to an incomplete
type and any other type

11.4 A conversion should not be performed between a pointer to object and
an integer type

11.5 A conversion should not be performed from pointer to void into pointer
to object

11.6 A cast shall not be performed between pointer to void and an arithmetic
type

11.7 A cast shall not be performed between pointer to object and a non-
integer arithmetic type

11.8 A cast shall not remove any const or volatile qualification from the type
pointed to by a pointer

12.1 The precedence of operators within expressions should be made explicit
12.3 The comma operator should not be used
13.2 The value of an expression and its persistent side effects shall be the

same under all permitted evaluation orders
13.4 The result of an assignment operator should not be used
14.1 A loop counter shall not have essentially floating type
14.2 A for loop shall be well-formed
14.4 The controlling expression of an if statement and the controlling

expression of an iteration-statement shall have essentially Boolean type
15.1 The goto statement should not be used
15.2 The goto statement shall jump to a label declared later in the same

function
15.3 Any label referenced by a goto statement shall be declared in the same

block, or in any block enclosing the goto statement
15.5 A function should have a single point of exit at the end
15.6 The body of an iteration- statement or a selection- statement shall be a

compound- statement
15.7 All if … else if constructs shall be terminated with an else statement
16.4 Every switch statement shall have a default label

 Software Quality Objective Subsets (C:2012)

2-57

Rule Description

16.5 A default label shall appear as either the first or the last switch label of
a switch statement

17.1 The features of <starg.h> shall not be used
17.2 Functions shall not call themselves, either directly or indirectly
17.4 All exit paths from a function with non-void return type shall have an

explicit return statement with an expression
18.3 The relational operators >, >=, < and <= shall not be applied to objects

of pointer type except where they point into the same object
18.4 The +, -, += and -= operators should not be applied to an expression of

pointer type
18.5 Declarations should contain no more than two levels of pointer nesting
18.6 The address of an object with automatic storage shall not be copied to

another object that persists after the first object has ceased to exist
19.2 The union keyword should not be used
20.4 A macro shall not be defined with the same name as a keyword
20.6 Tokens that look like a preprocessing directive shall not occur within a

macro argument
20.7 Expressions resulting from the expansion of macro parameters shall be

enclosed in parentheses
20.9 All identifiers used in the controlling expression of #if or #elif

preprocessing directives shall be #define'd before evaluation
20.11 A macro parameter immediately following a # operator shall not

immediately be followed by a ## operator
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not

be used

See Also
“Check MISRA C:2012” | “Use generated code requirements (C)”

Related Examples
• “Activate Coding Rules Checker” on page 3-2

2 Coding Rule Sets and Concepts

2-58

• “Set Up Coding Rules Checking”

More About
• “MISRA C:2012 Directives and Rules”

 Unsupported MISRA C:2012 Guidelines

2-59

Unsupported MISRA C:2012 Guidelines

The Polyspace coding rules checker does not check the following MISRA C:2012 coding
rules. These rules cannot be enforced because they are outside the scope of Polyspace
software. These guidelines concern documentation, dynamic aspects, or functional
aspects of MISRA rules.

Number Category AGC
Category

Definition

Directive
1.1

Required Required Any implementation-defined behavior on which the
output of the program depends shall be documented and
understood

Directive
3.1

Required Required All code shall be traceable to documented requirements

Directive
4.2

Advisory Advisory All usage of assembly language should be documented

Directive
4.4

Advisory Advisory Sections of code should not be “commented out”

Directive
4.7

Required Required If a function returns error information, then that error
information shall be tested

Directive
4.8

Advisory Advisory If a pointer to a structure or union is never dereferenced
within a translation unit, then the implementation of the
object should be hidden

Directive
4.12

Required Required Dynamic memory allocation shall not be used

2 Coding Rule Sets and Concepts

2-60

Polyspace MISRA C++ Checker

The Polyspace MISRA C++ checker helps you comply with theMISRA C++:2008 coding
standard.4

When MISRA C++ rules are violated, the Polyspace MISRA C++ checker enables
Polyspace software to provide messages with information about the rule violations. Most
messages are reported during the compile phase of an analysis. The MISRA C++ checker
can check 185 of the 228 MISRA C++ coding rules.

There are subsets of MISRA C++ coding rules that can have a direct or indirect impact
on the selectivity (reliability percentage) of your results. When you set up rule checking,
you can select these subsets directly. These subsets are defined in “Software Quality
Objective Subsets (C++)” on page 2-61.

Note: The Polyspace MISRA C++ checker is based on MISRA C++:2008 – “Guidelines for
the use of the C++ language in critical systems." For more information on these coding
standards, see http://www.misra-cpp.com.

4. MISRA is a registered trademark of MISRA Ltd., held on behalf of the MISRA Consortium.

http://www.misra-cpp.com/

 Software Quality Objective Subsets (C++)

2-61

Software Quality Objective Subsets (C++)
In this section...

“SQO Subset 1 – Direct Impact on Selectivity” on page 2-61
“SQO Subset 2 – Indirect Impact on Selectivity” on page 2-63

SQO Subset 1 – Direct Impact on Selectivity

The following set of coding rules will typically improve the selectivity of your results.

MISRA C++ Rule Description

2-10-2 Identifiers declared in an inner scope shall not hide an identifier declared in
an outer scope.

3-1-3 When an array is declared, its size shall either be stated explicitly or defined
implicitly by initialization.

3-3-2 The One Definition Rule shall not be violated.
3-9-3 The underlying bit representations of floating-point values shall not be used.
5-0-15 Array indexing shall be the only form of pointer arithmetic.
5-0-18 >, >=, <, <= shall not be applied to objects of pointer type, except where they

point to the same array.
5-0-19 The declaration of objects shall contain no more than two levels of pointer

indirection.
5-2-8 An object with integer type or pointer to void type shall not be converted to an

object with pointer type.
5-2-9 A cast should not convert a pointer type to an integral type.
6-2-2 Floating-point expressions shall not be directly or indirectly tested for equality

or inequality.
6-5-1 A for loop shall contain a single loop-counter which shall not have floating

type.
6-5-2 If loop-counter is not modified by -- or ++, then, within condition, the loop-

counter shall only be used as an operand to <=, <, > or >=.
6-5-3 The loop-counter shall not be modified within condition or statement.
6-5-4 The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n

remains constant for the duration of the loop.

2 Coding Rule Sets and Concepts

2-62

MISRA C++ Rule Description

6-6-1 Any label referenced by a goto statement shall be declared in the same block,
or in a block enclosing the goto statement.

6-6-2 The goto statement shall jump to a label declared later in the same function
body.

6-6-4 For any iteration statement there shall be no more than one break or goto
statement used for loop termination.

6-6-5 A function shall have a single point of exit at the end of the function.
7-5-1 A function shall not return a reference or a pointer to an automatic variable

(including parameters), defined within the function.
7-5-2 The address of an object with automatic storage shall not be assigned to

another object that may persist after the first object has ceased to exist.
7-5-4 Functions should not call themselves, either directly or indirectly.
8-4-1 Functions shall not be defined using the ellipsis notation.
9-5-1 Unions shall not be used.
10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy.
10-1-3 An accessible base class shall not be both virtual and nonvirtual in the same

hierarchy.
10-3-1 There shall be no more than one definition of each virtual function on each

path through the inheritance hierarchy.
10-3-2 Each overriding virtual function shall be declared with the virtual keyword.
10-3-3 A virtual function shall only be overridden by a pure virtual function if it is

itself declared as pure virtual.
15-0-3 Control shall not be transferred into a try or catch block using a goto or a

switch statement.
15-1-3 An empty throw (throw;) shall only be used in the compound- statement of a

catch handler.
15-3-3 Handlers of a function-try-block implementation of a class constructor or

destructor shall not reference non-static members from this class or its bases.
15-3-5 A class type exception shall always be caught by reference.

 Software Quality Objective Subsets (C++)

2-63

MISRA C++ Rule Description

15-3-6 Where multiple handlers are provided in a single try-catch statement or
function-try-block for a derived class and some or all of its bases, the handlers
shall be ordered most-derived to base class.

15-3-7 Where multiple handlers are provided in a single try-catch statement or
function-try-block, any ellipsis (catch-all) handler shall occur last.

15-4-1 If a function is declared with an exception-specification, then all declarations
of the same function (in other translation units) shall be declared with the
same set of type-ids.

15-5-1 A class destructor shall not exit with an exception.
15-5-2 Where a function's declaration includes an exception-specification, the function

shall only be capable of throwing exceptions of the indicated type(s).
18-4-1 Dynamic heap memory allocation shall not be used.

SQO Subset 2 – Indirect Impact on Selectivity

Good design practices generally lead to less code complexity, which can improve the
selectivity of your results. The following set of coding rules may help to address design
issues that impact selectivity. The SQO-subset2 option checks the rules in SQO-
subset1 and SQO-subset2.

MISRA C++ Rule Description

2-10-2 Identifiers declared in an inner scope shall not hide an identifier declared in
an outer scope.

3-1-3 When an array is declared, its size shall either be stated explicitly or defined
implicitly by initialization.

3-3-2 If a function has internal linkage then all re-declarations shall include the
static storage class specifier.

3-4-1 An identifier declared to be an object or type shall be defined in a block that
minimizes its visibility.

3-9-2 typedefs that indicate size and signedness should be used in place of the basic
numerical types.

3-9-3 The underlying bit representations of floating-point values shall not be used.
4-5-1 Expressions with type bool shall not be used as operands to built-in operators

other than the assignment operator =, the logical operators &&, ||, !, the

2 Coding Rule Sets and Concepts

2-64

MISRA C++ Rule Description

equality operators == and !=, the unary & operator, and the conditional
operator.

5-0-1 The value of an expression shall be the same under any order of evaluation
that the standard permits.

5-0-2 Limited dependence should be placed on C++ operator precedence rules in
expressions.

5-0-7 There shall be no explicit floating-integral conversions of a cvalue expression.
5-0-8 An explicit integral or floating-point conversion shall not increase the size of

the underlying type of a cvalue expression.
5-0-9 An explicit integral conversion shall not change the signedness of the

underlying type of a cvalue expression.
5-0-10 If the bitwise operators ~ and << are applied to an operand with an

underlying type of unsigned char or unsigned short, the result shall be
immediately cast to the underlying type of the operand.

5-0-13
5-0-15 Array indexing shall be the only form of pointer arithmetic.
5-0-18 >, >=, <, <= shall not be applied to objects of pointer type, except where they

point to the same array.
5-0-19 The declaration of objects shall contain no more than two levels of pointer

indirection.
5-2-1 Each operand of a logical && or || shall be a postfix - expression.
5-2-2 A pointer to a virtual base class shall only be cast to a pointer to a derived

class by means of dynamic_cast.
5-2-5 A cast shall not remove any const or volatile qualification from the type of a

pointer or reference.
5-2-6 A cast shall not convert a pointer to a function to any other pointer type,

including a pointer to function type.
5-2-7 An object with pointer type shall not be converted to an unrelated pointer

type, either directly or indirectly.
5-2-8 An object with integer type or pointer to void type shall not be converted to an

object with pointer type.
5-2-9 A cast should not convert a pointer type to an integral type.

 Software Quality Objective Subsets (C++)

2-65

MISRA C++ Rule Description

5-2-11 The comma operator, && operator and the || operator shall not be
overloaded.

5-3-2 The unary minus operator shall not be applied to an expression whose
underlying type is unsigned.

5-3-3 The unary & operator shall not be overloaded.
5-18-1 The comma operator shall not be used.
6-2-1 Assignment operators shall not be used in sub-expressions.
6-2-2 Floating-point expressions shall not be directly or indirectly tested for

equality or inequality.
6-3-1 The statement forming the body of a switch, while, do ... while or for

statement shall be a compound statement.
6-4-2 All if ... else if constructs shall be terminated with an else clause.
6-4-6 The final clause of a switch statement shall be the default-clause.
6-5-1 A for loop shall contain a single loop-counter which shall not have floating

type.
6-5-2 If loop-counter is not modified by -- or ++, then, within condition, the loop-

counter shall only be used as an operand to <=, <, > or >=.
6-5-3 The loop-counter shall not be modified within condition or statement.
6-5-4 The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n

remains constant for the duration of the loop.
6-6-1 Any label referenced by a goto statement shall be declared in the same block,

or in a block enclosing the goto statement.
6-6-2 The goto statement shall jump to a label declared later in the same function

body.
6-6-4 For any iteration statement there shall be no more than one break or goto

statement used for loop termination.
6-6-5 A function shall have a single point of exit at the end of the function.
7-5-1 A function shall not return a reference or a pointer to an automatic variable

(including parameters), defined within the function.
7-5-2 The address of an object with automatic storage shall not be assigned to

another object that may persist after the first object has ceased to exist.

2 Coding Rule Sets and Concepts

2-66

MISRA C++ Rule Description

7-5-4 Functions should not call themselves, either directly or indirectly.
8-4-1 Functions shall not be defined using the ellipsis notation.
8-4-3 All exit paths from a function with non- void return type shall have an

explicit return statement with an expression.
8-4-4 A function identifier shall either be used to call the function or it shall be

preceded by &.
8-5-2 Braces shall be used to indicate and match the structure in the non- zero

initialization of arrays and structures.
8-5-3 In an enumerator list, the = construct shall not be used to explicitly initialize

members other than the first, unless all items are explicitly initialized.
10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy.
10-1-3 An accessible base class shall not be both virtual and nonvirtual in the same

hierarchy.
10-3-1 There shall be no more than one definition of each virtual function on each

path through the inheritance hierarchy.
10-3-2 Each overriding virtual function shall be declared with the virtual keyword.
10-3-3 A virtual function shall only be overridden by a pure virtual function if it is

itself declared as pure virtual.
11-0-1 Member data in non- POD class types shall be private.
12-1-1 An object's dynamic type shall not be used from the body of its constructor or

destructor.
12-8-2 The copy assignment operator shall be declared protected or private in an

abstract class.
15-0-3 Control shall not be transferred into a try or catch block using a goto or a

switch statement.
15-1-3 An empty throw (throw;) shall only be used in the compound- statement of a

catch handler.
15-3-3 Handlers of a function-try-block implementation of a class constructor or

destructor shall not reference non-static members from this class or its bases.
15-3-5 A class type exception shall always be caught by reference.

 Software Quality Objective Subsets (C++)

2-67

MISRA C++ Rule Description

15-3-6 Where multiple handlers are provided in a single try-catch statement or
function-try-block for a derived class and some or all of its bases, the handlers
shall be ordered most-derived to base class.

15-3-7 Where multiple handlers are provided in a single try-catch statement or
function-try-block, any ellipsis (catch-all) handler shall occur last.

15-4-1 If a function is declared with an exception-specification, then all declarations
of the same function (in other translation units) shall be declared with the
same set of type-ids.

15-5-1 A class destructor shall not exit with an exception.
15-5-2 Where a function's declaration includes an exception-specification, the

function shall only be capable of throwing exceptions of the indicated type(s).
16-0-5 Arguments to a function-like macro shall not contain tokens that look like

preprocessing directives.
16-0-6 In the definition of a function-like macro, each instance of a parameter shall

be enclosed in parentheses, unless it is used as the operand of # or ##.
16-0-7 Undefined macro identifiers shall not be used in #if or #elif preprocessor

directives, except as operands to the defined operator.
16-2-2 C++ macros shall only be used for: include guards, type qualifiers, or storage

class specifiers.
16-3-1 There shall be at most one occurrence of the # or ## operators in a single

macro definition.
18-4-1 Dynamic heap memory allocation shall not be used.

2 Coding Rule Sets and Concepts

2-68

MISRA C++ Coding Rules
In this section...

“Supported MISRA C++ Coding Rules” on page 2-68
“Unsupported MISRA C++ Rules” on page 2-89

Supported MISRA C++ Coding Rules

• “Language Independent Issues” on page 2-68
• “General” on page 2-69
• “Lexical Conventions” on page 2-69
• “Basic Concepts” on page 2-71
• “Standard Conversions” on page 2-72
• “Expressions” on page 2-73
• “Statements” on page 2-77
• “Declarations” on page 2-79
• “Declarators” on page 2-81
• “Classes” on page 2-82
• “Derived Classes” on page 2-82
• “Member Access Control” on page 2-83
• “Special Member Functions” on page 2-83
• “Templates” on page 2-84
• “Exception Handling” on page 2-85
• “Preprocessing Directives” on page 2-86
• “Library Introduction” on page 2-88
• “Language Support Library” on page 2-88
• “Diagnostic Library” on page 2-89
• “Input/output Library” on page 2-89

Language Independent Issues

N. Category MISRA Definition Polyspace Specification

0-1-1 Required A project shall not contain
unreachable code.

Bug Finder and Code Prover check
this coding rule differently. The

 MISRA C++ Coding Rules

2-69

N. Category MISRA Definition Polyspace Specification

analyses can produce different
results.

0-1-2 Required A project shall not contain infeasible
paths.

0-1-7 Required The value returned by a function
having a non- void return type that
is not an overloaded operator shall
always be used.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

0-1-10 Required Every defined function shall be
called at least once.

Detects if static functions are not
called in their translation unit.
Other cases are detected by the
software.

General

N. Category MISRA Definition Polyspace Specification

1-0-1 Required All code shall conform to ISO/
IEC 14882:2003 "The C++
Standard Incorporating Technical
Corrigendum 1".

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

Lexical Conventions

N. Category MISRA Definition Polyspace Specification

2-3-1 Required Trigraphs shall not be used.
2-5-1 Advisory Digraphs should not be used.
2-7-1 Required The character sequence /* shall not

be used within a C-style comment.
This rule cannot be annotated in the
source code.

2-10-1 Required Different identifiers shall be
typographically unambiguous.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

2-10-2 Required Identifiers declared in an inner
scope shall not hide an identifier
declared in an outer scope.

No detection for logical scopes: fields
or member functions hiding outer
scopes identifiers or hiding ancestors
members.

2 Coding Rule Sets and Concepts

2-70

N. Category MISRA Definition Polyspace Specification

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

2-10-3 Required A typedef name (including
qualification, if any) shall be a
unique identifier.

No detection across namespaces.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

2-10-4 Required A class, union or enum name
(including qualification, if any) shall
be a unique identifier.

No detection across namespaces.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

2-10-5 Advisory The identifier name of a non-
member object or function with
static storage duration should not be
reused.

For functions the detection is only
on the definition where there is a
declaration.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

2-10-6 Required If an identifier refers to a type, it
shall not also refer to an object or a
function in the same scope.

If the identifier is a function and the
function is both declared and defined
then the violation is reported only
once.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

2-13-1 Required Only those escape sequences that
are defined in ISO/IEC 14882:2003
shall be used.

 MISRA C++ Coding Rules

2-71

N. Category MISRA Definition Polyspace Specification

2-13-2 Required Octal constants (other than zero)
and octal escape sequences (other
than "\0") shall not be used.

2-13-3 Required A "U" suffix shall be applied to all
octal or hexadecimal integer literals
of unsigned type.

2-13-4 Required Literal suffixes shall be upper case.
2-13-5 Required Narrow and wide string literals

shall not be concatenated.

Basic Concepts

N. Category MISRA Definition Polyspace Specification

3-1-1 Required It shall be possible to include any
header file in multiple translation
units without violating the One
Definition Rule.

3-1-2 Required Functions shall not be declared at
block scope.

3-1-3 Required When an array is declared, its size
shall either be stated explicitly or
defined implicitly by initialization.

3-2-1 Required All declarations of an object or
function shall have compatible
types.

3-2-2 Required The One Definition Rule shall not be
violated.

Report type, template, and inline
function defined in source file

3-2-3 Required A type, object or function that is
used in multiple translation units
shall be declared in one and only one
file.

3-2-4 Required An identifier with external linkage
shall have exactly one definition.

2 Coding Rule Sets and Concepts

2-72

N. Category MISRA Definition Polyspace Specification

3-3-1 Required Objects or functions with external
linkage shall be declared in a header
file.

3-3-2 Required If a function has internal linkage
then all re-declarations shall include
the static storage class specifier.

3-4-1 Required An identifier declared to be an object
or type shall be defined in a block
that minimizes its visibility.

3-9-1 Required The types used for an object, a
function return type, or a function
parameter shall be token-for-token
identical in all declarations and re-
declarations.

Comparison is done between
current declaration and last seen
declaration.

3-9-2 Advisory typedefs that indicate size and
signedness should be used in place
of the basic numerical types.

No detection in non-instantiated
templates.

3-9-3 Required The underlying bit representations
of floating-point values shall not be
used.

Standard Conversions

N. Category MISRA Definition Polyspace Specification

4-5-1 Required Expressions with type bool shall
not be used as operands to built-in
operators other than the assignment
operator =, the logical operators &&,
||, !, the equality operators == and !
=, the unary & operator, and the
conditional operator.

4-5-2 Required Expressions with type enum shall
not be used as operands to built- in
operators other than the subscript
operator [], the assignment operator
=, the equality operators == and !

 MISRA C++ Coding Rules

2-73

N. Category MISRA Definition Polyspace Specification

=, the unary & operator, and the
relational operators <, <=, >, >=.

4-5-3 Required Expressions with type (plain) char
and wchar_t shall not be used as
operands to built-in operators other
than the assignment operator =, the
equality operators == and !=, and
the unary & operator. N

Expressions

N. Category MISRA Definition Polyspace Specification

5-0-1 Required The value of an expression shall
be the same under any order of
evaluation that the standard
permits.

5-0-2 Advisory Limited dependence should be
placed on C++ operator precedence
rules in expressions.

5-0-3 Required A cvalue expression shall not be
implicitly converted to a different
underlying type.

Assumes that ptrdiff_t is signed
integer

5-0-4 Required An implicit integral conversion shall
not change the signedness of the
underlying type.

Assumes that ptrdiff_t is signed
integer

If the conversion is to a narrower
integer with a different sign then
MISRA C++ 5-0-4 takes precedence
over MISRA C++ 5-0-6.

5-0-5 Required There shall be no implicit floating-
integral conversions.

This rule takes precedence over
5-0-4 and 5-0-6 if they apply at the
same time.

5-0-6 Required An implicit integral or floating-point
conversion shall not reduce the size
of the underlying type.

If the conversion is to a narrower
integer with a different sign then
MISRA C++ 5-0-4 takes precedence
over MISRA C++ 5-0-6.

2 Coding Rule Sets and Concepts

2-74

N. Category MISRA Definition Polyspace Specification

5-0-7 Required There shall be no explicit floating-
integral conversions of a cvalue
expression.

5-0-8 Required An explicit integral or floating-
point conversion shall not increase
the size of the underlying type of a
cvalue expression.

5-0-9 Required An explicit integral conversion
shall not change the signedness
of the underlying type of a cvalue
expression.

5-0-10 Required If the bitwise operators ~ and <<
are applied to an operand with an
underlying type of unsigned char or
unsigned short, the result shall be
immediately cast to the underlying
type of the operand.

5-0-11 Required The plain char type shall only be
used for the storage and use of
character values.

For numeric data, use a type which
has explicit signedness.

5-0-12 Required Signed char and unsigned char type
shall only be used for the storage
and use of numeric values.

5-0-14 Required The first operand of a conditional-
operator shall have type bool.

5-0-15 Required Array indexing shall be the only
form of pointer arithmetic.

Warning on operations on pointers.
(p+I, I+p and p-I, where p is a
pointer and I an integer, p[i]
accepted).

5-0-18 Required >, >=, <, <= shall not be applied to
objects of pointer type, except where
they point to the same array.

Report when relational operator
are used on pointers types (casts
ignored).

5-0-19 Required The declaration of objects shall
contain no more than two levels of
pointer indirection.

 MISRA C++ Coding Rules

2-75

N. Category MISRA Definition Polyspace Specification

5-0-20 Required Non-constant operands to a binary
bitwise operator shall have the same
underlying type.

5-0-21 Required Bitwise operators shall only be
applied to operands of unsigned
underlying type.

5-2-1 Required Each operand of a logical && or ||
shall be a postfix - expression.

During preprocessing, violations
of this rule are detected on the
expressions in #if directives. Allowed
exception on associativity (a && b
&& c), (a || b || c).

5-2-2 Required A pointer to a virtual base class
shall only be cast to a pointer
to a derived class by means of
dynamic_cast.

5-2-3 Advisory Casts from a base class to a derived
class should not be performed on
polymorphic types.

5-2-4 Required C-style casts (other than void casts)
and functional notation casts (other
than explicit constructor calls) shall
not be used.

5-2-5 Required A cast shall not remove any const or
volatile qualification from the type
of a pointer or reference.

5-2-6 Required A cast shall not convert a pointer to
a function to any other pointer type,
including a pointer to function type.

No violation if pointer types of
operand and target are identical.

5-2-7 Required An object with pointer type shall not
be converted to an unrelated pointer
type, either directly or indirectly.

"Extended to all pointer conversions
including between pointer to struct
object and pointer to type of the first
member of the struct type. Indirect
conversions through non-pointer
type (e.g. int) are not detected."

2 Coding Rule Sets and Concepts

2-76

N. Category MISRA Definition Polyspace Specification

5-2-8 Required An object with integer type or
pointer to void type shall not be
converted to an object with pointer
type.

Exception on zero constants. Objects
with pointer type include objects
with pointer to function type.

5-2-9 Advisory A cast should not convert a pointer
type to an integral type.

5-2-10 Advisory The increment (++) and decrement
(--) operators should not be
mixed with other operators in an
expression.

5-2-11 Required The comma operator, && operator
and the || operator shall not be
overloaded.

5-2-12 Required An identifier with array type passed
as a function argument shall not
decay to a pointer.

5-3-1 Required Each operand of the ! operator,
the logical && or the logical ||
operators shall have type bool.

5-3-2 Required The unary minus operator shall not
be applied to an expression whose
underlying type is unsigned.

5-3-3 Required The unary & operator shall not be
overloaded.

5-3-4 Required Evaluation of the operand to the
sizeof operator shall not contain side
effects.

No warning on volatile accesses and
function calls

5-8-1 Required The right hand operand of a shift
operator shall lie between zero and
one less than the width in bits of
the underlying type of the left hand
operand.

 MISRA C++ Coding Rules

2-77

N. Category MISRA Definition Polyspace Specification

5-14-1 Required The right hand operand of a logical
&& or || operator shall not contain
side effects.

No warning on volatile accesses and
function calls.

5-18-1 Required The comma operator shall not be
used.

5-19-1 Required Evaluation of constant unsigned
integer expressions should not lead
to wrap-around.

Statements

N. Category MISRA Definition Polyspace Specification

6-2-1 Required Assignment operators shall not be
used in sub-expressions.

6-2-2 Required Floating-point expressions shall not
be directly or indirectly tested for
equality or inequality.

6-2-3 Required Before preprocessing, a null
statement shall only occur on a
line by itself; it may be followed
by a comment, provided that
the first character following the
null statement is a white - space
character.

6-3-1 Required The statement forming the body
of a switch, while, do ... while or
for statement shall be a compound
statement.

6-4-1 Required An if (condition) construct shall be
followed by a compound statement.
The else keyword shall be followed
by either a compound statement, or
another if statement.

6-4-2 Required All if ... else if constructs shall be
terminated with an else clause.

Also detects cases where the last
if is in the block of the last else

2 Coding Rule Sets and Concepts

2-78

N. Category MISRA Definition Polyspace Specification

(same behavior as JSF, stricter than
MISRA C).

Example: "if … else { if …{}}"
raises the rule

6-4-3 Required A switch statement shall be a well-
formed switch statement.

Return statements are considered as
jump statements.

6-4-4 Required A switch-label shall only be used
when the most closely-enclosing
compound statement is the body of a
switch statement.

6-4-5 Required An unconditional throw or break
statement shall terminate every non
- empty switch-clause.

6-4-6 Required The final clause of a switch
statement shall be the default-
clause.

6-4-7 Required The condition of a switch statement
shall not have bool type.

6-4-8 Required Every switch statement shall have
at least one case-clause.

6-5-1 Required A for loop shall contain a single
loop-counter which shall not have
floating type.

6-5-2 Required If loop-counter is not modified by --
or ++, then, within condition, the
loop-counter shall only be used as an
operand to <=, <, > or >=.

6-5-3 Required The loop-counter shall not be
modified within condition or
statement.

Detect only direct assignments if
for_index is known (see 6-5-1).

6-5-4 Required The loop-counter shall be modified
by one of: --, ++, -=n, or +=n ; where
n remains constant for the duration
of the loop.

 MISRA C++ Coding Rules

2-79

N. Category MISRA Definition Polyspace Specification

6-5-5 Required A loop-control-variable other
than the loop-counter shall not
be modified within condition or
expression.

6-5-6 Required A loop-control-variable other than
the loop-counter which is modified in
statement shall have type bool.

6-6-1 Required Any label referenced by a goto
statement shall be declared in the
same block, or in a block enclosing
the goto statement.

6-6-2 Required The goto statement shall jump to
a label declared later in the same
function body.

6-6-3 Required The continue statement shall only be
used within a well-formed for loop.

Assumes 6.5.1 to 6.5.6: so it is
implemented only for supported
6_5_x rules.

6-6-4 Required For any iteration statement there
shall be no more than one break
or goto statement used for loop
termination.

6-6-5 Required A function shall have a single point
of exit at the end of the function.

At most one return not necessarily
as last statement for void functions.

Declarations

N. Category MISRA Definition Polyspace Specification

7-3-1 Required The global namespace shall
only contain main, namespace
declarations and extern "C"
declarations.

7-3-2 Required The identifier main shall not be used
for a function other than the global
function main.

2 Coding Rule Sets and Concepts

2-80

N. Category MISRA Definition Polyspace Specification

7-3-3 Required There shall be no unnamed
namespaces in header files.

7-3-4 Required using-directives shall not be used.
7-3-5 Required Multiple declarations for an

identifier in the same namespace
shall not straddle a using-
declaration for that identifier.

7-3-6 Required using-directives and using-
declarations (excluding class scope
or function scope using-declarations)
shall not be used in header files.

7-4-2 Required Assembler instructions shall
only be introduced using the asm
declaration.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

7-4-3 Required Assembly language shall be
encapsulated and isolated.

7-5-1 Required A function shall not return a
reference or a pointer to an
automatic variable (including
parameters), defined within the
function.

7-5-2 Required The address of an object with
automatic storage shall not be
assigned to another object that may
persist after the first object has
ceased to exist.

7-5-3 Required A function shall not return a
reference or a pointer to a parameter
that is passed by reference or const
reference.

7-5-4 Advisory Functions should not call
themselves, either directly or
indirectly.

 MISRA C++ Coding Rules

2-81

Declarators

N. Category MISRA Definition Polyspace Specification

8-0-1 Required An init-declarator-list or a member-
declarator-list shall consist of a
single init-declarator or member-
declarator respectively.

8-3-1 Required Parameters in an overriding virtual
function shall either use the same
default arguments as the function
they override, or else shall not
specify any default arguments.

8-4-1 Required Functions shall not be defined using
the ellipsis notation.

8-4-2 Required The identifiers used for the
parameters in a re-declaration of a
function shall be identical to those in
the declaration.

8-4-3 Required All exit paths from a function with
non- void return type shall have an
explicit return statement with an
expression.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

8-4-4 Required A function identifier shall either be
used to call the function or it shall
be preceded by &.

8-5-1 Required All variables shall have a defined
value before they are used.

Non-initialized variable in results
and error messages for obvious cases

8-5-2 Required Braces shall be used to indicate
and match the structure in the non-
zero initialization of arrays and
structures.

8-5-3 Required In an enumerator list, the =
construct shall not be used to
explicitly initialize members other
than the first, unless all items are
explicitly initialized.

2 Coding Rule Sets and Concepts

2-82

Classes

N. Category MISRA Definition Polyspace Specification

9-3-1 Required const member functions shall
not return non-const pointers or
references to class-data.

Class-data for a class is restricted to
all non-static member data.

9-3-2 Required Member functions shall not return
non-const handles to class-data.

Class-data for a class is restricted to
all non-static member data.

9-5-1 Required Unions shall not be used.
9-6-2 Required Bit-fields shall be either bool type

or an explicitly unsigned or signed
integral type.

9-6-3 Required Bit-fields shall not have enum type.
9-6-4 Required Named bit-fields with signed integer

type shall have a length of more
than one bit.

Derived Classes

N. Category MISRA Definition Polyspace Specification

10-1-1 Advisory Classes should not be derived from
virtual bases.

10-1-2 Required A base class shall only be declared
virtual if it is used in a diamond
hierarchy.

Assumes 10.1.1 not required

10-1-3 Required An accessible base class shall not be
both virtual and nonvirtual in the
same hierarchy.

10-2-1 Required All accessible entity names within
a multiple inheritance hierarchy
should be unique.

No detection between entities of
different kinds (member functions
against data members, …).

10-3-1 Required There shall be no more than one
definition of each virtual function on
each path through the inheritance
hierarchy.

Member functions that are virtual
by inheritance are also detected.

 MISRA C++ Coding Rules

2-83

N. Category MISRA Definition Polyspace Specification

10-3-2 Required Each overriding virtual function
shall be declared with the virtual
keyword.

10-3-3 Required A virtual function shall only be
overridden by a pure virtual
function if it is itself declared as
pure virtual.

Member Access Control

N. Category MISRA Definition Polyspace Specification

11-0-1 Required Member data in non- POD class
types shall be private.

Special Member Functions

N. Category MISRA Definition Polyspace Specification

12-1-1 Required An object's dynamic type shall not be
used from the body of its constructor
or destructor.

12-1-2 Advisory All constructors of a class should
explicitly call a constructor for all of
its immediate base classes and all
virtual base classes.

12-1-3 Required All constructors that are callable
with a single argument of
fundamental type shall be declared
explicit.

12-8-1 Required A copy constructor shall only
initialize its base classes and the
non- static members of the class of
which it is a member.

12-8-2 Required The copy assignment operator shall
be declared protected or private in
an abstract class.

2 Coding Rule Sets and Concepts

2-84

Templates

N. Category MISRA Definition Polyspace Specification

14-5-2 Required A copy constructor shall be declared
when there is a template constructor
with a single parameter that is a
generic parameter.

14-5-3 Required A copy assignment operator
shall be declared when there is
a template assignment operator
with a parameter that is a generic
parameter.

14-6-1 Required In a class template with a dependent
base, any name that may be found
in that dependent base shall be
referred to using a qualified-id or
this->

14-6-2 Required The function chosen by overload
resolution shall resolve to a
function declared previously in the
translation unit.

14-7-3 Required All partial and explicit
specializations for a template shall
be declared in the same file as
the declaration of their primary
template.

14-8-1 Required Overloaded function templates shall
not be explicitly specialized.

All specializations of overloaded
templates are rejected even if
overloading occurs after the call.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

14-8-2 Advisory The viable function set for a function
call should either contain no

 MISRA C++ Coding Rules

2-85

N. Category MISRA Definition Polyspace Specification

function specializations, or only
contain function specializations.

Exception Handling

N. Category MISRA Definition Polyspace Specification

15-0-2 Advisory An exception object should not have
pointer type.

NULL not detected (see 15-1-2).

15-0-3 Required Control shall not be transferred into
a try or catch block using a goto or a
switch statement.

15-1-2 Required NULL shall not be thrown explicitly.
15-1-3 Required An empty throw (throw;) shall only

be used in the compound- statement
of a catch handler.

15-3-2 Advisory There should be at least one
exception handler to catch all
otherwise unhandled exceptions.

Detect that there is no try/catch in
the main and that the catch does not
handle all exceptions. Not detected if
no "main".

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

15-3-3 Required Handlers of a function-try-
block implementation of a class
constructor or destructor shall not
reference non-static members from
this class or its bases.

15-3-5 Required A class type exception shall always
be caught by reference.

15-3-6 Required Where multiple handlers are
provided in a single try-catch
statement or function-try-block for
a derived class and some or all of its

2 Coding Rule Sets and Concepts

2-86

N. Category MISRA Definition Polyspace Specification

bases, the handlers shall be ordered
most-derived to base class.

15-3-7 Required Where multiple handlers are
provided in a single try-catch
statement or function-try-block,
any ellipsis (catch-all) handler shall
occur last.

15-4-1 Required If a function is declared with an
exception-specification, then all
declarations of the same function
(in other translation units) shall be
declared with the same set of type-
ids.

15-5-1 Required A class destructor shall not exit with
an exception.

Limit detection to throw and catch
that are internals to the destructor;
rethrows are partially processed; no
detections in nested handlers.

15-5-2 Required Where a function's declaration
includes an exception-specification,
the function shall only be capable of
throwing exceptions of the indicated
type(s).

Limit detection to throw that
are internals to the function;
rethrows are partially processed; no
detections in nested handlers.

Preprocessing Directives

N. Category MISRA Definition Polyspace Specification

16-0-1 Required #include directives in a file
shall only be preceded by other
preprocessor directives or comments.

16-0-2 Required Macros shall only be #define 'd or
#undef 'd in the global namespace.

16-0-3 Required #undef shall not be used.
16-0-4 Required Function-like macros shall not be

defined.

 MISRA C++ Coding Rules

2-87

N. Category MISRA Definition Polyspace Specification

16-0-5 Required Arguments to a function-like macro
shall not contain tokens that look
like preprocessing directives.

16-0-6 Required In the definition of a function-like
macro, each instance of a parameter
shall be enclosed in parentheses,
unless it is used as the operand of #
or ##.

16-0-7 Required Undefined macro identifiers
shall not be used in #if or #elif
preprocessor directives, except as
operands to the defined operator.

16-0-8 Required If the # token appears as the
first token on a line, then it shall
be immediately followed by a
preprocessing token.

16-1-1 Required The defined preprocessor operator
shall only be used in one of the two
standard forms.

16-1-2 Required All #else, #elif and #endif
preprocessor directives shall reside
in the same file as the #if or #ifdef
directive to which they are related.

16-2-1 Required The preprocessor shall only be used
for file inclusion and include guards.

The rule is raised for #ifdef/#define
if the file is not an include file.

16-2-2 Required C++ macros shall only be used for:
include guards, type qualifiers, or
storage class specifiers.

16-2-3 Required Include guards shall be provided.
16-2-4 Required The ', ", /* or // characters shall not

occur in a header file name.

16-2-5 Advisory The \ character should not occur in
a header file name.

2 Coding Rule Sets and Concepts

2-88

N. Category MISRA Definition Polyspace Specification

16-2-6 Required The #include directive shall be
followed by either a <filename> or
"filename" sequence.

16-3-1 Required There shall be at most one
occurrence of the # or ## operators
in a single macro definition.

16-3-2 Advisory The # and ## operators should not
be used.

Library Introduction

N. Category MISRA Definition Polyspace Specification

17-0-1 Required Reserved identifiers, macros and
functions in the standard library
shall not be defined, redefined or
undefined.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

17-0-2 Required The names of standard library
macros and objects shall not be
reused.

17-0-5 Required The setjmp macro and the longjmp
function shall not be used.

Language Support Library

N. Category MISRA Definition Polyspace Specification

18-0-1 Required The C library shall not be used.
18-0-2 Required The library functions atof, atoi and

atol from library <cstdlib> shall not
be used.

18-0-3 Required The library functions abort, exit,
getenv and system from library
<cstdlib> shall not be used.

The option -dialect iso must
be used to detect violations, for
example, exit.

18-0-4 Required The time handling functions of
library <ctime> shall not be used.

 MISRA C++ Coding Rules

2-89

N. Category MISRA Definition Polyspace Specification

18-0-5 Required The unbounded functions of library
<cstring> shall not be used.

18-2-1 Required The macro offsetof shall not be used.
18-4-1 Required Dynamic heap memory allocation

shall not be used.

18-7-1 Required The signal handling facilities of
<csignal> shall not be used.

Diagnostic Library

N. Category MISRA Definition Polyspace Specification

19-3-1 Required The error indicator errno shall not
be used.

Input/output Library

N. Category MISRA Definition Polyspace Specification

27-0-1 Required The stream input/output library
<cstdio> shall not be used.

Unsupported MISRA C++ Rules

• “Language Independent Issues” on page 2-90
• “General” on page 2-91
• “Lexical Conventions” on page 2-91
• “Standard Conversions” on page 2-92
• “Expressions” on page 2-92
• “Declarations” on page 2-92
• “Classes” on page 2-93
• “Templates” on page 2-93
• “Exception Handling” on page 2-94

2 Coding Rule Sets and Concepts

2-90

• “Preprocessing Directives” on page 2-94
• “Library Introduction” on page 2-94

Language Independent Issues

N. Category MISRA Definition Polyspace Specification

0–1–3 Required A project shall not contain unused
variables.

0-1-4 Required A project shall not contain non-
volatile POD variables having only
one use.

0-1-5 Required A project shall not contain unused
type declarations.

0-1-6 Required A project shall not contain instances
of non-volatile variables being given
values that are never subsequently
used.

0-1-8 Required All functions with void return type
shall have external side effects.

0-1-9 Required There shall be no dead code. Not checked by the coding rules
checker. Can be enforced through
detection of dead code during
analysis.

0-1-11 Required There shall be no unused
parameters (named or unnamed) in
nonvirtual functions.

0-1-12 Required There shall be no unused
parameters (named or unnamed) in
the set of parameters for a virtual
function and all the functions that
override it.

0-2-1 Required An object shall not be assigned to an
overlapping object.

0-3-1 Required Minimization of run-time failures
shall be ensured by the use of at
least one of: (a) static analysis tools/

 MISRA C++ Coding Rules

2-91

N. Category MISRA Definition Polyspace Specification

techniques; (b) dynamic analysis
tools/techniques; (c) explicit coding
of checks to handle run-time faults.

0-3-2 Required If a function generates error
information, then that error
information shall be tested.

0-4-1 Document Use of scaled-integer or fixed-point
arithmetic shall be documented.

0-4-2 Document Use of floating-point arithmetic shall
be documented.

0-4-3 Document Floating-point implementations
shall comply with a defined floating-
point standard.

General

N. Category MISRA Definition Polyspace Specification

1-0-2 Document Multiple compilers shall only be
used if they have a common, defined
interface.

1-0-3 Document The implementation of integer
division in the chosen compiler shall
be determined and documented.

Lexical Conventions

N. Category MISRA Definition Polyspace Specification

2-2-1 Document The character set and the
corresponding encoding shall be
documented.

2-7-2 Required Sections of code shall not be
"commented out" using C-style
comments.

2-7-3 Advisory Sections of code should not be
"commented out" using C++
comments.

2 Coding Rule Sets and Concepts

2-92

Standard Conversions

N. Category MISRA Definition Polyspace Specification

4-10-1 Required ULL shall not be used as an integer
value.

4-10-2 Required Literal zero (0) shall not be used as
the null-pointer-constant.

Expressions

N. Category MISRA Definition Polyspace Specification

5-0-13 Required The condition of an if-statement
and the condition of an iteration-
statement shall have type bool.

5-0-16 Required A pointer operand and any pointer
resulting from pointer arithmetic
using that operand shall both
address elements of the same array.

5-0-17 Required Subtraction between pointers shall
only be applied to pointers that
address elements of the same array.

5-17-1 Required The semantic equivalence between a
binary operator and its assignment
operator form shall be preserved.

Declarations

N. MISRA Definition Polyspace Specification

7-1-1 Required A variable which is not modified
shall be const qualified.

7-1-2 Required A pointer or reference parameter
in a function shall be declared as
pointer to const or reference to const
if the corresponding object is not
modified.

 MISRA C++ Coding Rules

2-93

N. MISRA Definition Polyspace Specification

7-2-1 Required An expression with enum underlying
type shall only have values
corresponding to the enumerators of
the enumeration.

7-4-1 Document All usage of assembler shall be
documented.

Classes

N. Category MISRA Definition Polyspace Specification

9-3-3 Required If a member function can be made
static then it shall be made static,
otherwise if it can be made const
then it shall be made const.

9-6-1 Document When the absolute positioning
of bits representing a bit-field
is required, then the behavior
and packing of bit-fields shall be
documented.

Templates

N. MISRA Definition Polyspace Specification

14-5-1 Required A non-member generic function shall
only be declared in a namespace that
is not an associated namespace.

14-7-1 Required All class templates, function
templates, class template member
functions and class template static
members shall be instantiated at
least once.

14-7-2 Required For any given template
specialization, an explicit
instantiation of the template with
the template-arguments used in the
specialization shall not render the
program ill-formed.

2 Coding Rule Sets and Concepts

2-94

Exception Handling

N. Category MISRA Definition Polyspace Specification

15-0-1 Document Exceptions shall only be used for
error handling.

15-1-1 Required The assignment-expression of a
throw statement shall not itself
cause an exception to be thrown.

15-3-1 Required Exceptions shall be raised only after
start-up and before termination of
the program.

15-3-4 Required Each exception explicitly thrown in
the code shall have a handler of a
compatible type in all call paths that
could lead to that point.

15-5-3 Required The terminate() function shall not be
called implicitly.

Preprocessing Directives

N. Category MISRA Definition Polyspace Specification

16-6-1 Document All uses of the #pragma directive
shall be documented.

Library Introduction

N. Category MISRA Definition Polyspace Specification

17-0-3 Required The names of standard library
functions shall not be overridden.

17-0-4 Required All library code shall conform to
MISRA C++.

 Polyspace JSF C++ Checker

2-95

Polyspace JSF C++ Checker

The Polyspace JSF C++ checker helps you comply with the Joint Strike Fighter® Air
Vehicle C++ coding standards (JSF++). These coding standards were developed by
Lockheed Martin® for the Joint Strike Fighter program. They are designed to improve
the robustness of C++ code, and improve maintainability.

5

When JSF++ rules are violated, the Polyspace JSF C++ checker enables Polyspace
software to provide messages with information about the rule violations. Most messages
are reported during the compile phase of an analysis.

Note: The Polyspace JSF C++ checker is based on JSF++:2005. For more information on
these coding standards, see Joint Strike Fighter Air Vehicle C++ Coding Standards for
the System Development and Demonstration Program.

5. JSF and Joint Strike Fighter are registered trademarks of Lockheed Martin.

http://www.jsf.mil/downloads/documents/JSF_AV_C++_Coding_Standards_Rev_C.doc
http://www.jsf.mil/downloads/documents/JSF_AV_C++_Coding_Standards_Rev_C.doc

2 Coding Rule Sets and Concepts

2-96

JSF C++ Coding Rules

In this section...

“Supported JSF C++ Coding Rules” on page 2-96
“Unsupported JSF++ Rules” on page 2-119

Supported JSF C++ Coding Rules

• “Code Size and Complexity” on page 2-97
• “Environment” on page 2-97
• “Libraries” on page 2-98
• “Pre-Processing Directives” on page 2-98
• “Header Files” on page 2-100
• “Style” on page 2-100
• “Classes” on page 2-104
• “Namespaces” on page 2-108
• “Templates” on page 2-108
• “Functions” on page 2-108
• “Comments” on page 2-109
• “Declarations and Definitions” on page 2-109
• “Initialization” on page 2-110
• “Types” on page 2-111
• “Constants” on page 2-111
• “Variables” on page 2-111
• “Unions and Bit Fields” on page 2-112
• “Operators” on page 2-112
• “Pointers and References” on page 2-113
• “Type Conversions” on page 2-114
• “Flow Control Standards” on page 2-115
• “Expressions” on page 2-117
• “Memory Allocation” on page 2-118

 JSF C++ Coding Rules

2-97

• “Fault Handling” on page 2-118
• “Portable Code” on page 2-118

Code Size and Complexity

N. JSF++ Definition Polyspace Specification

1 Any one function (or method) will contain no
more than 200 logical source lines of code (L-
SLOCs).

Message in report file:

<function name> has <num> logical source
lines of code.

3 All functions shall have a cyclomatic
complexity number of 20 or less.

Message in report file:

<function name> has cyclomatic
complexity number equal to <num>.

Environment

N. JSF++ Definition Polyspace Specification

8 All code shall conform to ISO/IEC
14882:2002(E) standard C++.

Reports the compilation error message

9 Only those characters specified in the C++
basic source character set will be used.

11 Trigraphs will not be used.
12 The following digraphs will not be used: <%,

%>, <:, :>, %:, %:%:.
Message in report file:

The following digraph will not be used:
<digraph>.

Reports the digraph. If the rule level is set to
warning, the digraph will be allowed even if
it is not supported in -dialect iso.

13 Multi-byte characters and wide string
literals will not be used.

Report L'c', L"string", and use of
wchar_t.

14 Literal suffixes shall use uppercase rather
than lowercase letters.

15 Provision shall be made for run-time
checking (defensive programming).

Done with checks in the software.

2 Coding Rule Sets and Concepts

2-98

Libraries

N. JSF++ Definition Polyspace Specification

17 The error indicator errno shall not be
used.

errno should not be used as a macro or a
global with external "C" linkage.

18 The macro offsetof, in library
<stddef.h>, shall not be used.

offsetof should not be used as a macro or
a global with external "C" linkage.

19 <locale.h> and the setlocale function
shall not be used.

setlocale and localeconv should not be
used as a macro or a global with external "C"
linkage.

20 The setjmp macro and the longjmp
function shall not be used.

setjmp and longjmp should not be used
as a macro or a global with external "C"
linkage.

21 The signal handling facilities of
<signal.h> shall not be used.

signal and raise should not be used as a
macro or a global with external "C" linkage.

22 The input/output library <stdio.h> shall
not be used.

all standard functions of <stdio.h> should
not be used as a macro or a global with
external "C" linkage.

23 The library functions atof, atoi and atol
from library <stdlib.h> shall not be used.

atof, atoi and atol should not be used
as a macro or a global with external "C"
linkage.

24 The library functions abort, exit, getenv
and system from library <stdlib.h> shall
not be used.

abort, exit, getenv and system should
not be used as a macro or a global with
external "C" linkage.

25 The time handling functions of library
<time.h> shall not be used.

clock, difftime, mktime, asctime,
ctime, gmtime, localtime and strftime
should not be used as a macro or a global
with external "C" linkage.

Pre-Processing Directives

N. JSF++ Definition Polyspace Specification

26 Only the following preprocessor directives
shall be used: #ifndef, #define, #endif,
#include.

 JSF C++ Coding Rules

2-99

N. JSF++ Definition Polyspace Specification

27 #ifndef, #define and #endif will be
used to prevent multiple inclusions of
the same header file. Other techniques to
prevent the multiple inclusions of header
files will not be used.

Detects the patterns #if !defined,
#pragma once, #ifdef, and missing
#define.

28 The #ifndef and #endif preprocessor
directives will only be used as defined in AV
Rule 27 to prevent multiple inclusions of the
same header file.

Detects any use that does not comply with
AV Rule 27. Assuming 35/27 is not violated,
reports only #ifndef.

29 The #define preprocessor directive shall
not be used to create inline macros. Inline
functions shall be used instead.

Rule is split into two parts: the definition of
a macro function (29.def) and the call of a
macrofunction (29.use).

Messages in report file:

• 29.1 : The #define preprocessor
directive shall not be used to create inline
macros.

• 29.2 : Inline functions shall be used
instead of inline macros.

30 The #define preprocessor directive shall
not be used to define constant values.
Instead, the const qualifier shall be
applied to variable declarations to specify
constant values.

Reports #define of simple constants.

31 The #define preprocessor directive will
only be used as part of the technique to
prevent multiple inclusions of the same
header file.

Detects use of #define that are not used to
guard for multiple inclusion, assuming that
rules 35 and 27 are not violated.

32 The #include preprocessor directive will
only be used to include header (*.h) files.

2 Coding Rule Sets and Concepts

2-100

Header Files

N. JSF++ Definition Polyspace Specification

33 The #include directive shall use the
<filename.h> notation to include header
files.

35 A header file will contain a mechanism that
prevents multiple inclusions of itself.

39 Header files (*.h) will not contain non-
const variable definitions or function
definitions.

Reports definitions of global variables /
function in header.

Style

N. JSF++ Definition Polyspace Specification

40 Every implementation file shall include the
header files that uniquely define the inline
functions, types, and templates used.

Reports when type, template, or inline
function is defined in source file.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

41 Source lines will be kept to a length of 120
characters or less.

42 Each expression-statement will be on a
separate line.

Reports when two consecutive expression
statements are on the same line.

43 Tabs should be avoided.
44 All indentations will be at least two spaces

and be consistent within the same source
file.

Reports when a statement indentation
is not at least two spaces more than the
statement containing it. Does not report
bad indentation between opening braces
following if/else, do/while, for, and while
statements. NB: in final release it will
accept any indentation

46 User-specified identifiers (internal and
external) will not rely on significance of
more than 64 characters.

 JSF C++ Coding Rules

2-101

N. JSF++ Definition Polyspace Specification

47 Identifiers will not begin with the
underscore character '_'.

48 Identifiers will not differ by:

• Only a mixture of case
• The presence/absence of the underscore

character
• The interchange of the letter 'O'; with the

number '0' or the letter 'D'
• The interchange of the letter 'I'; with the

number '1' or the letter 'l'
• The interchange of the letter 'S' with the

number '5'
• The interchange of the letter 'Z' with the

number 2
• The interchange of the letter 'n' with the

letter 'h'

Checked regardless of scope. Not checked
between macros and other identifiers.

Messages in report file:

• Identifier Idf1 (file1.cpp line l1
column c1) and Idf2 (file2.cpp
line l2 column c2) only differ by
the presence/absence of the underscore
character.

• Identifier Idf1 (file1.cpp line l1
column c1) and Idf2 (file2.cpp
line l2 column c2) only differ by a
mixture of case.

• Identifier Idf1 (file1.cpp line l1
column c1) and Idf2 (file2.cpp
line l2 column c2) only differ by
letter O, with the number 0.

50 The first word of the name of a class,
structure, namespace, enumeration, or type
created with typedef will begin with an
uppercase letter. All others letters will be
lowercase.

Messages in report file:

• The first word of the name of a class will
begin with an uppercase letter.

• The first word of the namespace of a class
will begin with an uppercase letter.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

2 Coding Rule Sets and Concepts

2-102

N. JSF++ Definition Polyspace Specification

51 All letters contained in function and
variables names will be composed entirely
of lowercase letters.

Messages in report file:

• All letters contained in variable names
will be composed entirely of lowercase
letters.

• All letters contained in function names
will be composed entirely of lowercase
letters.

52 Identifiers for constant and enumerator
values shall be lowercase.

Messages in report file:

• Identifier for enumerator value shall be
lowercase.

• Identifier for template constant
parameter shall be lowercase.

53 Header files will always have file name
extension of ".h".

.H is allowed if you set the option -dos.

53.1 The following character sequences shall not
appear in header file names: ', \, /*, //, or
".

54 Implementation files will always have a file
name extension of ".cpp".

Not case sensitive if you set the option -dos.

57 The public, protected, and private sections of
a class will be declared in that order.

58 When declaring and defining functions with
more than two parameters, the leading
parenthesis and the first argument will
be written on the same line as the function
name. Each additional argument will
be written on a separate line (with the
closing parenthesis directly after the last
argument).

Detects that two parameters are not on the
same line, The first parameter should be on
the same line as function name. Does not
check for the closing parenthesis.

 JSF C++ Coding Rules

2-103

N. JSF++ Definition Polyspace Specification

59 The statements forming the body of an
if, else if, else, while, do ... while or for
statement shall always be enclosed in
braces, even if the braces form an empty
block.

Messages in report file:

• The statements forming the body of an
if statement shall always be enclosed in
braces.

• The statements forming the body of an
else statement shall always be enclosed
in braces.

• The statements forming the body of a
while statement shall always be enclosed
in braces.

• The statements forming the body of a
do ... while statement shall always be
enclosed in braces.

• The statements forming the body of a for
statement shall always be enclosed in
braces.

60 Braces ("{}") which enclose a block will be
placed in the same column, on separate lines
directly before and after the block.

Detects that statement-block braces should
be in the same columns.

61 Braces ("{}") which enclose a block will
have nothing else on the line except
comments.

62 The dereference operator ‘*’ and the address-
of operator ‘&’ will be directly connected
with the type-specifier.

Reports when there is a space between type
and "*" "&" for variables, parameters and
fields declaration.

2 Coding Rule Sets and Concepts

2-104

N. JSF++ Definition Polyspace Specification

63 Spaces will not be used around ‘.’ or ‘->’, nor
between unary operators and operands.

Reports when the following characters are
not directly connected to a white space:

• .
• ->
• !
• ~
• -
• ++
• —

Note: A violation will be reported for “.” used
in float/double definition.

Classes

N. JSF++ Definition Polyspace Specification

67 Public and protected data should only be
used in structs - not classes.

68 Unneeded implicitly generated member
functions shall be explicitly disallowed.

Reports when default constructor,
assignment operator, copy constructor or
destructor is not declared.

71.1 A class’s virtual functions shall not be
invoked from its destructor or any of its
constructors.

Reports when a constructor or destructor
directly calls a virtual function.

74 Initialization of nonstatic class members
will be performed through the member
initialization list rather than through
assignment in the body of a constructor.

All data should be initialized in the
initialization list except for array. Does not
report that an assignment exists in ctor
body.

Message in report file:

Initialization of nonstatic class members
"<field>" will be performed through the
member initialization list.

 JSF C++ Coding Rules

2-105

N. JSF++ Definition Polyspace Specification

75 Members of the initialization list shall be
listed in the order in which they are declared
in the class.

76 A copy constructor and an assignment
operator shall be declared for classes that
contain pointers to data items or nontrivial
destructors.

Messages in report file:

• no copy constructor and no copy

assign

• no copy constructor

• no copy assign

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

77.1 The definition of a member function
shall not contain default arguments that
produce a signature identical to that of the
implicitly-declared copy constructor for the
corresponding class/structure.

Does not report when an explicit copy
constructor exists.

78 All base classes with a virtual function shall
define a virtual destructor.

79 All resources acquired by a class shall be
released by the class’s destructor.

Reports when the number of “new” called in
a constructor is greater than the number of
“delete” called in its destructor.

Note: A violation is raised even if “new” is
done in a “if/else”.

2 Coding Rule Sets and Concepts

2-106

N. JSF++ Definition Polyspace Specification

81 The assignment operator shall handle self-
assignment correctly

Reports when copy assignment body does
not begin with “if (this != arg)”

A violation is not raised if an empty else
statement follows the if, or the body
contains only a return statement.

A violation is raised when the if statement
is followed by a statement other than the
return statement.

82 An assignment operator shall return a
reference to *this.

The following operators should return
*this on method, and *first_arg on plain
function.

operator=operator+=operator-

=operator*=operator >>=operator

<<=operator /=operator %=operator

|=operator &=operator ^=prefix

operator++ prefix operator--

Does not report when no return exists.

No special message if type does not match.

Messages in report file:

• An assignment operator shall return a
reference to *this.

• An assignment operator shall return a
reference to its first arg.

83 An assignment operator shall assign all data
members and bases that affect the class
invariant (a data element representing a
cache, for example, would not need to be
copied).

Reports when a copy assignment does not
assign all data members. In a derived class,
it also reports when a copy assignment does
not call inherited copy assignments.

 JSF C++ Coding Rules

2-107

N. JSF++ Definition Polyspace Specification

88 Multiple inheritance shall only be allowed
in the following restricted form: n interfaces
plus m private implementations, plus at most
one protected implementation.

Messages in report file:

• Multiple inheritance on public
implementation shall not be allowed:
<public_base_class> is not an
interface.

• Multiple inheritance on protected
implementation shall not be allowed :
<protected_base_class_1>.

• <protected_base_class_2> are not
interfaces.

88.1 A stateful virtual base shall be explicitly
declared in each derived class that accesses
it.

89 A base class shall not be both virtual and
nonvirtual in the same hierarchy.

94 An inherited nonvirtual function shall not
be redefined in a derived class.

Does not report for destructor.

Message in report file:

Inherited nonvirtual function %s shall not be
redefined in a derived class.

95 An inherited default parameter shall never
be redefined.

96 Arrays shall not be treated
polymorphically.

Reports pointer arithmetic and array like
access on expressions whose pointed type is
used as a base class.

97 Arrays shall not be used in interface. Only to prevent array-to-pointer-decay. Not
checked on private methods

97.1 Neither operand of an equality operator (==
or !=) shall be a pointer to a virtual member
function.

Reports == and != on pointer to member
function of polymorphic classes (cannot
determine statically if it is virtual or not),
except when one argument is the null
constant.

2 Coding Rule Sets and Concepts

2-108

Namespaces

N. JSF++ Definition Polyspace Specification

98 Every nonlocal name, except main(),
should be placed in some namespace.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

99 Namespaces will not be nested more than
two levels deep.

Templates

N. JSF++ Definition Polyspace Specification

104 A template specialization shall be declared
before its use.

Reports the actual compilation error
message.

Functions

N. JSF++ Definition Polyspace Specification

107 Functions shall always be declared at file
scope.

108 Functions with variable numbers of
arguments shall not be used.

109 A function definition should not be placed in
a class specification unless the function is
intended to be inlined.

Reports when "inline" is not in the definition
of a member function inside the class
definition.

110 Functions with more than 7 arguments will
not be used.

111 A function shall not return a pointer or
reference to a non-static local object.

Simple cases without alias effect detected.

113 Functions will have a single exit point. Reports first return, or once per function.
114 All exit points of value-returning functions

shall be through return statements.

116 Small, concrete-type arguments (two or
three words in size) should be passed by
value if changes made to formal parameters
should not be reflected in the calling
function.

Report constant parameters references with
sizeof <= 2 * sizeof(int). Does not
report for copy-constructor.

 JSF C++ Coding Rules

2-109

N. JSF++ Definition Polyspace Specification

119 Functions shall not call themselves, either
directly or indirectly (i.e. recursion shall not
be allowed).

Direct recursion is reported statically.
Indirect recursion reported through the
software.

Message in report file:

Function <F> shall not call directly itself.
121 Only functions with 1 or 2 statements

should be considered candidates for inline
functions.

Reports inline functions with more than 2
statements.

Comments

N. JSF++ Definition Polyspace Specification

126 Only valid C++ style comments (//) shall be
used.

133 Every source file will be documented with
an introductory comment that provides
information on the file name, its contents,
and any program-required information (e.g.
legal statements, copyright information, etc).

Reports when a file does not begin with two
comment lines.

Note: This rule cannot be annotated in the
source code.

Declarations and Definitions

N. JSF++ Definition Polyspace Specification

135 Identifiers in an inner scope shall not use
the same name as an identifier in an outer
scope, and therefore hide that identifier.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

136 Declarations should be at the smallest
feasible scope.

Reports when:

• A global variable is used in only one
function.

• A local variable is not used in a
statement (expr, return, init …) of
the same level of its declaration (in the

2 Coding Rule Sets and Concepts

2-110

N. JSF++ Definition Polyspace Specification

same block) or is not used in two sub-
statements of its declaration.

Note:

• Non-used variables are reported.

• Initializations at definition are ignored
(not considered an access)

137 All declarations at file scope should be static
where possible.

138 Identifiers shall not simultaneously have
both internal and external linkage in the
same translation unit.

139 External objects will not be declared in more
than one file.

Reports all duplicate declarations inside
a translation unit. Reports when the
declaration localization is not the same in all
translation units.

140 The register storage class specifier shall not
be used.

141 A class, structure, or enumeration will not
be declared in the definition of its type.

Initialization

N. JSF++ Definition Polyspace Specification

142 All variables shall be initialized before use. Done with Non-initialized variable checks in
the software.

144 Braces shall be used to indicate and match
the structure in the non-zero initialization of
arrays and structures.

This covers partial initialization.

145 In an enumerator list, the '=' construct shall
not be used to explicitly initialize members
other than the first, unless all items are
explicitly initialized.

Generates one report for an enumerator list.

 JSF C++ Coding Rules

2-111

Types

N. JSF++ Definition Polyspace Specification

147 The underlying bit representations of
floating point numbers shall not be used in
any way by the programmer.

Reports on casts with float pointers (except
with void*).

148 Enumeration types shall be used instead of
integer types (and constants) to select from a
limited series of choices.

Reports when non enumeration types are
used in switches.

Constants

N. JSF++ Definition Polyspace Specification

149 Octal constants (other than zero) shall not
be used.

150 Hexadecimal constants will be represented
using all uppercase letters.

151 Numeric values in code will not be used;
symbolic values will be used instead.

Reports direct numeric constants (except
integer/float value 1, 0) in expressions, non
-const initializations. and switch cases.
char constants are allowed. Does not report
on templates non-type parameter.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

151.1 A string literal shall not be modified. Report when a char*, char[], or string
type is used not as const.

A violation is raised if a string literal (for
example, “ “) is cast as a non const.

Variables

N. JSF++ Definition Polyspace Specification

152 Multiple variable declarations shall not be
allowed on the same line.

2 Coding Rule Sets and Concepts

2-112

Unions and Bit Fields

N. JSF++ Definition Polyspace Specification

153 Unions shall not be used.
154 Bit-fields shall have explicitly unsigned

integral or enumeration types only.

156 All the members of a structure (or class)
shall be named and shall only be accessed
via their names.

Reports unnamed bit-fields (unnamed fields
are not allowed).

Operators

N. JSF++ Definition Polyspace Specification

157 The right hand operand of a && or ||
operator shall not contain side effects.

Assumes rule 159 is not violated.

Messages in report file:

• The right hand operand of a && operator
shall not contain side effects.

• The right hand operand of a || operator
shall not contain side effects.

158 The operands of a logical && or || shall be
parenthesized if the operands contain binary
operators.

Messages in report file:

• The operands of a logical && shall be
parenthesized if the operands contain
binary operators.

• The operands of a logical || shall be
parenthesized if the operands contain
binary operators.

Exception for: X || Y || Z , Z&&Y &&Z
159 Operators ||, &&, and unary & shall not be

overloaded.
Messages in report file:

• Unary operator & shall not be
overloaded.

• Operator || shall not be overloaded.
• Operator && shall not be overloaded.

 JSF C++ Coding Rules

2-113

N. JSF++ Definition Polyspace Specification

160 An assignment expression shall be used
only as the expression in an expression
statement.

Only simple assignment, not +=, ++, etc.

162 Signed and unsigned values shall not
be mixed in arithmetic or comparison
operations.

163 Unsigned arithmetic shall not be used.
164 The right hand operand of a shift operator

shall lie between zero and one less than
the width in bits of the left-hand operand
(inclusive).

164.1 The left-hand operand of a right-shift
operator shall not have a negative value.

Detects constant case +. Found by the
software for dynamic cases.

165 The unary minus operator shall not be
applied to an unsigned expression.

166 The sizeof operator will not be used on
expressions that contain side effects.

168 The comma operator shall not be used.

Pointers and References

N. JSF++ Definition Polyspace Specification

169 Pointers to pointers should be avoided when
possible.

Reports second-level pointers, except for
arguments of main.

170 More than 2 levels of pointer indirection
shall not be used.

Only reports on variables/parameters.

171 Relational operators shall not be applied to
pointer types except where both operands
are of the same type and point to:

• the same object,
• the same function,
• members of the same object, or

Reports when relational operator are used
on pointer types (casts ignored).

2 Coding Rule Sets and Concepts

2-114

N. JSF++ Definition Polyspace Specification

• elements of the same array (including
one past the end of the same array).

173 The address of an object with automatic
storage shall not be assigned to an object
which persists after the object has ceased to
exist.

174 The null pointer shall not be de-referenced. Done with checks in software.
175 A pointer shall not be compared to NULL or

be assigned NULL; use plain 0 instead.
Reports usage of NULL macro in pointer
contexts.

176 A typedef will be used to simplify program
syntax when declaring function pointers.

Reports non-typedef function pointers, or
pointers to member functions for types of
variables, fields, parameters. Returns type
of function, cast, and exception specification.

Type Conversions

N. JSF++ Definition Polyspace Specification

177 User-defined conversion functions should
be avoided.

Reports user defined conversion function,
non-explicit constructor with one parameter
or default value for others (even undefined
ones).

Does not report copy-constructor.

Additional message for constructor case:

This constructor should be flagged as
"explicit".

178 Down casting (casting from base to derived
class) shall only be allowed through one of
the following mechanism:

• Virtual functions that act like dynamic
casts (most likely useful in relatively
simple cases).

• Use of the visitor (or similar) pattern
(most likely useful in complicated cases).

Reports explicit down casting, dynamic_cast
included. (Visitor patter does not have a
special case.)

 JSF C++ Coding Rules

2-115

N. JSF++ Definition Polyspace Specification

179 A pointer to a virtual base class shall not be
converted to a pointer to a derived class.

Reports this specific down cast. Allows
dynamic_cast.

180 Implicit conversions that may result in a
loss of information shall not be used.

Reports the following implicit casts :

integer => smaller integer

unsigned => smaller or eq signed

signed => smaller or eq un-signed

integer => float float => integer

Does not report for cast to bool reports
for implicit cast on constant done with the
options -scalar-overflows-checks
signed-and-unsigned or -ignore-
constant-overflows

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

181 Redundant explicit casts will not be used. Reports useless cast: cast T to T. Casts to
equivalent typedefs are also reported.

182 Type casting from any type to or from
pointers shall not be used.

Does not report when Rule 181 applies.

184 Floating point numbers shall not be
converted to integers unless such a
conversion is a specified algorithmic
requirement or is necessary for a hardware
interface.

Reports float->int conversions. Does not
report implicit ones.

185 C++ style casts (const_cast,
reinterpret_cast, and static_cast)
shall be used instead of the traditional C-
style casts.

Flow Control Standards

N. JSF++ Definition Polyspace Specification

186 There shall be no unreachable code. Done with gray checks in the software.

2 Coding Rule Sets and Concepts

2-116

N. JSF++ Definition Polyspace Specification

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

187 All non-null statements shall potentially
have a side-effect.

188 Labels will not be used, except in switch
statements.

189 The goto statement shall not be used.
190 The continue statement shall not be used.
191 The break statement shall not be used

(except to terminate the cases of a switch
statement).

192 All if, else if constructs will contain
either a final else clause or a comment
indicating why a final else clause is not
necessary.

else if should contain an else clause.

193 Every non-empty case clause in a switch
statement shall be terminated with a break
statement.

194 All switch statements that do not intend
to test for every enumeration value shall
contain a final default clause.

Reports only for missing default.

195 A switch expression will not represent a
Boolean value.

196 Every switch statement will have at least
two cases and a potential default.

197 Floating point variables shall not be used
as loop counters.

Assumes 1 loop parameter.

198 The initialization expression in a for
loop will perform no actions other than
to initialize the value of a single for loop
parameter.

Reports if loop parameter cannot be
determined. Assumes Rule 200 is not
violated. The loop variable parameter is
assumed to be a variable.

 JSF C++ Coding Rules

2-117

N. JSF++ Definition Polyspace Specification

199 The increment expression in a for loop will
perform no action other than to change a
single loop parameter to the next value for
the loop.

Assumes 1 loop parameter (Rule 198),
with non class type. Rule 200 must not be
violated for this rule to be reported.

200 Null initialize or increment expressions in
for loops will not be used; a while loop
will be used instead.

201 Numeric variables being used within a
for loop for iteration counting shall not be
modified in the body of the loop.

Assumes 1 loop parameter (AV rule 198),
and no alias writes.

Expressions

N. JSF++ Definition Polyspace Specification

202 Floating point variables shall not be tested
for exact equality or inequality.

Reports only direct equality/inequality.
Check done for all expressions.

203 Evaluation of expressions shall not lead to
overflow/underflow.

Done with overflow checks in the software.

204 A single operation with side-effects shall
only be used in the following contexts:

• by itself
• the right-hand side of an assignment
• a condition
• the only argument expression with a

side-effect in a function call
• condition of a loop
• switch condition
• single part of a chained operation

Reports when:

• A side effect is found in a return
statement

• A side effect exists on a single value, and
only one operand of the function call has
a side effect.

204.1 The value of an expression shall be the
same under any order of evaluation that the
standard permits.

Reports when:

• Variable is written more than once in an
expression

• Variable is read and write in sub-
expressions

2 Coding Rule Sets and Concepts

2-118

N. JSF++ Definition Polyspace Specification

• Volatile variable is accessed more than
once

Note: Read-write operations such as ++, are
only considered as a write.

205 The volatile keyword shall not be used
unless directly interfacing with hardware.

Reports if volatile keyword is used.

Memory Allocation

N. JSF++ Definition Polyspace Specification

206 Allocation/deallocation from/to the free store
(heap) shall not occur after initialization.

Reports calls to C library functions: malloc
/ calloc / realloc / free and all new/
delete operators in functions or methods.

Fault Handling

N. JSF++ Definition Polyspace Specification

208 C++ exceptions shall not be used. Reports try, catch, throw spec, and
throw.

Portable Code

N. JSF++ Definition Polyspace Specification

209 The basic types of int, short, long, float
and double shall not be used, but specific-
length equivalents should be typedef'd
accordingly for each compiler, and these type
names used in the code.

Only allows use of basic types through direct
typedefs.

213 No dependence shall be placed on C++’s
operator precedence rules, below arithmetic
operators, in expressions.

Reports when a binary operation has one
operand that is not parenthesized and is an
operation with inferior precedence level.

Reports bitwise and shifts operators that
are used without parenthesis and binary
operation arguments.

 JSF C++ Coding Rules

2-119

N. JSF++ Definition Polyspace Specification

215 Pointer arithmetic will not be used. Reports:p + Ip - Ip++p--p+=p-=

Allows p[i].

Unsupported JSF++ Rules

• “Code Size and Complexity” on page 2-119
• “Rules” on page 2-120
• “Environment” on page 2-120
• “Libraries” on page 2-120
• “Header Files” on page 2-120
• “Style” on page 2-121
• “Classes” on page 2-121
• “Namespaces” on page 2-123
• “Templates” on page 2-123
• “Functions” on page 2-123
• “Comments” on page 2-124
• “Initialization” on page 2-124
• “Types” on page 2-125
• “Unions and Bit Fields” on page 2-125
• “Operators” on page 2-125
• “Type Conversions” on page 2-125
• “Expressions” on page 2-125
• “Memory Allocation” on page 2-126
• “Portable Code” on page 2-126
• “Efficiency Considerations” on page 2-126
• “Miscellaneous” on page 2-126
• “Testing” on page 2-126

Code Size and Complexity

N. JSF++ Definition

2 There shall not be any self-modifying code.

2 Coding Rule Sets and Concepts

2-120

Rules

N. JSF++ Definition

4 To break a “should” rule, the following approval must be received by the developer:

• approval from the software engineering lead (obtained by the unit approval in the
developmental CM tool)

5 To break a “will” or a “shall” rule, the following approvals must be received by the
developer:

• approval from the software engineering lead (obtained by the unit approval in the
developmental CM tool)

• approval from the software product manager (obtained by the unit approval in the
developmental CM tool)

6 Each deviation from a “shall” rule shall be documented in the file that contains the
deviation. Deviations from this rule shall not be allowed, AV Rule 5 notwithstanding.

7 Approval will not be required for a deviation from a “shall” or “will” rule that complies
with an exception specified by that rule.

Environment

N. JSF++ Definition

10 Values of character types will be restricted to a defined and documented subset of ISO
10646 1.

Libraries

N. JSF++ Definition

16 Only DO-178B level A [15] certifiable or SEAL 1 C/C++ libraries shall be used with safety-
critical (i.e. SEAL 1) code.

Header Files

N. JSF++ Definition

34 Header files should contain logically related declarations only.
36 Compilation dependencies should be minimized when possible.

 JSF C++ Coding Rules

2-121

N. JSF++ Definition

37 Header (include) files should include only those header files that are required for them to
successfully compile. Files that are only used by the associated .cpp file should be placed in
the .cpp file — not the .h file.

38 Declarations of classes that are only accessed via pointers (*) or references (&) should be
supplied by forward headers that contain only forward declarations.

Style

N. JSF++ Definition

45 All words in an identifier will be separated by the ‘_’ character.
49 All acronyms in an identifier will be composed of uppercase letters.
55 The name of a header file should reflect the logical entity for which it provides

declarations.
56 The name of an implementation file should reflect the logical entity for which it provides

definitions and have a “.cpp” extension (this name will normally be identical to the header
file that provides the corresponding declarations.)

At times, more than one .cpp file for a given logical entity will be required. In these cases,
a suffix should be appended to reflect a logical differentiation.

Classes

N. JSF++ Definition

64 A class interface should be complete and minimal.
65 A structure should be used to model an entity that does not require an invariant.
66 A class should be used to model an entity that maintains an invariant.
69 A member function that does not affect the state of an object (its instance variables) will be

declared const. Member functions should be const by default. Only when there is a clear,
explicit reason should the const modifier on member functions be omitted.

70 A class will have friends only when a function or object requires access to the private
elements of the class, but is unable to be a member of the class for logical or efficiency
reasons.

70.1 An object shall not be improperly used before its lifetime begins or after its lifetime ends.
71 Calls to an externally visible operation of an object, other than its constructors, shall not

be allowed until the object has been fully initialized.

2 Coding Rule Sets and Concepts

2-122

N. JSF++ Definition

72 The invariant for a class should be:

• A part of the postcondition of every class constructor,
• A part of the precondition of the class destructor (if any),
• A part of the precondition and postcondition of every other publicly accessible

operation.
73 Unnecessary default constructors shall not be defined.
77 A copy constructor shall copy all data members and bases that affect the class invariant (a

data element representing a cache, for example, would not need to be copied).
80 The default copy and assignment operators will be used for classes when those operators

offer reasonable semantics.
84 Operator overloading will be used sparingly and in a conventional manner.
85 When two operators are opposites (such as == and !=), both will be defined and one will be

defined in terms of the other.
86 Concrete types should be used to represent simple independent concepts.
87 Hierarchies should be based on abstract classes.
90 Heavily used interfaces should be minimal, general and abstract.
91 Public inheritance will be used to implement “is-a” relationships.
92 A subtype (publicly derived classes) will conform to the following guidelines with respect

to all classes involved in the polymorphic assignment of different subclass instances to the
same variable or parameter during the execution of the system:

• Preconditions of derived methods must be at least as weak as the preconditions of the
methods they override.

• Postconditions of derived methods must be at least as strong as the postconditions of
the methods they override.

In other words, subclass methods must expect less and deliver more than the base
class methods they override. This rule implies that subtypes will conform to the Liskov
Substitution Principle.

93 “has-a” or “is-implemented-in-terms-of” relationships will be modeled through membership
or non-public inheritance.

 JSF C++ Coding Rules

2-123

Namespaces

N. JSF++ Definition

100 Elements from a namespace should be selected as follows:

• using declaration or explicit qualification for few (approximately five) names,
• using directive for many names.

Templates

N. JSF++ Definition

101 Templates shall be reviewed as follows:

1 with respect to the template in isolation considering assumptions or requirements
placed on its arguments.

2 with respect to all functions instantiated by actual arguments.
102 Template tests shall be created to cover all actual template instantiations.
103 Constraint checks should be applied to template arguments.
105 A template definition’s dependence on its instantiation contexts should be minimized.
106 Specializations for pointer types should be made where appropriate.

Functions

N. JSF++ Definition

112 Function return values should not obscure resource ownership.
115 If a function returns error information, then that error information will be tested.
117 Arguments should be passed by reference if NULL values are not possible:

• 117.1 – An object should be passed as const T& if the function should not change the
value of the object.

• 117.2 – An object should be passed as T& if the function may change the value of the
object.

118 Arguments should be passed via pointers if NULL values are possible:

• 118.1 – An object should be passed as const T* if its value should not be modified.
• 118.2 – An object should be passed as T* if its value may be modified.

2 Coding Rule Sets and Concepts

2-124

N. JSF++ Definition

120 Overloaded operations or methods should form families that use the same semantics,
share the same name, have the same purpose, and that are differentiated by formal
parameters.

122 Trivial accessor and mutator functions should be inlined.
123 The number of accessor and mutator functions should be minimized.
124 Trivial forwarding functions should be inlined.
125 Unnecessary temporary objects should be avoided.

Comments

N. JSF++ Definition

127 Code that is not used (commented out) shall be deleted.

Note: This rule cannot be annotated in the source code.
128 Comments that document actions or sources (e.g. tables, figures, paragraphs, etc.) outside

of the file being documented will not be allowed.
129 Comments in header files should describe the externally visible behavior of the functions

or classes being documented.
130 The purpose of every line of executable code should be explained by a comment, although

one comment may describe more than one line of code.
131 One should avoid stating in comments what is better stated in code (i.e. do not simply

repeat what is in the code).
132 Each variable declaration, typedef, enumeration value, and structure member will be

commented.
134 Assumptions (limitations) made by functions should be documented in the function’s

preamble.

Initialization

N. JSF++ Definition

143 Variables will not be introduced until they can be initialized with meaningful values.
(See also AV Rule 136, AV Rule 142, and AV Rule 73 concerning declaration scope,
initialization before use, and default constructors respectively.)

 JSF C++ Coding Rules

2-125

Types

N. JSF++ Definition

146 Floating point implementations shall comply with a defined floating point standard.

The standard that will be used is the ANSI/IEEE® Std 754 [1].

Unions and Bit Fields

N. JSF++ Definition

155 Bit-fields will not be used to pack data into a word for the sole purpose of saving space.

Operators

N. JSF++ Definition

167 The implementation of integer division in the chosen compiler shall be determined,
documented and taken into account.

Type Conversions

N. JSF++ Definition

183 Every possible measure should be taken to avoid type casting.

Expressions

N. JSF++ Definition

204 A single operation with side-effects shall only be used in the following contexts:

1 by itself
2 the right-hand side of an assignment
3 a condition
4 the only argument expression with a side-effect in a function call
5 condition of a loop
6 switch condition
7 single part of a chained operation

2 Coding Rule Sets and Concepts

2-126

Memory Allocation

N. JSF++ Definition

207 Unencapsulated global data will be avoided.

Portable Code

N. JSF++ Definition

210 Algorithms shall not make assumptions concerning how data is represented in memory
(e.g. big endian vs. little endian, base class subobject ordering in derived classes, nonstatic
data member ordering across access specifiers, etc.).

210.1 Algorithms shall not make assumptions concerning the order of allocation of nonstatic
data members separated by an access specifier.

211 Algorithms shall not assume that shorts, ints, longs, floats, doubles or long doubles begin
at particular addresses.

212 Underflow or overflow functioning shall not be depended on in any special way.
214 Assuming that non-local static objects, in separate translation units, are initialized in a

special order shall not be done.

Efficiency Considerations

N. JSF++ Definition

216 Programmers should not attempt to prematurely optimize code.

Miscellaneous

N. JSF++ Definition

217 Compile-time and link-time errors should be preferred over run-time errors.
218 Compiler warning levels will be set in compliance with project policies.

Testing

N. JSF++ Definition

219 All tests applied to a base class interface shall be applied to all derived class interfaces
as well. If the derived class poses stronger postconditions/invariants, then the new
postconditions /invariants shall be substituted in the derived class tests.

 JSF C++ Coding Rules

2-127

N. JSF++ Definition

220 Structural coverage algorithms shall be applied against flattened classes.
221 Structural coverage of a class within an inheritance hierarchy containing virtual functions

shall include testing every possible resolution for each set of identical polymorphic
references.

3

Check Coding Rules from the
Polyspace Environment

• “Activate Coding Rules Checker” on page 3-2
• “Select Specific MISRA or JSF Coding Rules” on page 3-6
• “Create Custom Coding Rules” on page 3-9
• “Format of Custom Coding Rules File” on page 3-11
• “Exclude Files From Analysis” on page 3-12
• “Allow Custom Pragma Directives” on page 3-13
• “Specify Boolean Types” on page 3-14
• “Find Coding Rule Violations” on page 3-15
• “Review Coding Rule Violations” on page 3-16
• “Filter and Group Coding Rule Violations” on page 3-18
• “Rules to Disable for Faster Analysis” on page 3-21

3 Check Coding Rules from the Polyspace Environment

3-2

Activate Coding Rules Checker

This example shows how to activate the coding rules checker before you start an analysis.
This activation enables Polyspace Bug Finder to search for coding rule violations. You
can view the coding rule violations in your analysis results.

1 Open project configuration.
2 On the Configuration pane, select Coding Rules & Code Metrics.
3 Select the check box for the type of coding rules that you want to check.

For C code, you can check compliance with:

• MISRA C:2004
• MISRA AC AGC
• MISRA C:2012

If you have generated code, use the Use generated code requirements option
to use the MISRA C:2012 categories for generated code.

• Custom coding rules

For C++ code, you can check compliance with:

• MISRA C++: 2008
• JSF C++
• Custom coding rules

4 For each rule type that you select, from the drop-down list, select the subset of rules
to check.

Checking for certain rules can cause the analysis to run longer than usual. For more
information, see “Rules to Disable for Faster Analysis” on page 3-21.

MISRA C:2004

Option Description

required-rules All required MISRA C:2004 coding rules.
all-rules AllMISRA C:2004 coding rules (required and advisory).

 Activate Coding Rules Checker

3-3

Option Description

SQO-subset1

A small subset of MISRA C:2004 rules. In Polyspace Code
Prover, observing these rules can reduce the number of
unproven results.

SQO-subset2

A second subset of rules that include the rules in SQO-
subset1 and contain some additional rules. In Polyspace
Code Prover, observing the additional rules can further
reduce the number of unproven results.

custom A set of MISRA C:2004 coding rules that you specify.

MISRA AC AGC

Option Description

OBL-rules All required MISRA AC AGC coding rules.

OBL-REC-rules
All required and recommended MISRA AC AGC coding
rules.

all-rules All required, recommended, and readability coding rules.

SQO-subset1

A small subset of MISRA AC AGC rules. In Polyspace
Code Prover, observing these rules can reduce the number
of unproven results.

SQO-subset2

A second subset of MISRA AC AGC rules that include the
rules in SQO-subset1 and contain some additional rules.
In Polyspace Code Prover, observing the additional rules
can further reduce the number of unproven results.

custom A set of MISRA AC AGC coding rules that you specify.

MISRA C:2012

Option Description

mandatory

All mandatory MISRA C:2012 coding rules. If you have
generated code, also use the Use generated code
requirements option categorization for generated code.

3 Check Coding Rules from the Polyspace Environment

3-4

Option Description

mandatory-required

All mandatory and required MISRA C:2012 coding rules.
If you have generated code, also use the Use generated
code requirements option categorization for generated
code.

all
All MISRA C:2012 coding rules (mandatory, required, and
advisory).

SQO-subset1

A small subset of MISRA C rules. In Polyspace Code
Prover, observing these rules can reduce the number of
unproven results.

SQO-subset2

A second subset of rules that include the rules in SQO-
subset1 and contain some additional rules. In Polyspace
Code Prover, observing the additional rules can further
reduce the number of unproven results.

custom A set of MISRA C:2012 coding rules that you specify.

MISRA C++

Option Description

required-rules All required MISRA C++ coding rules.
all-rules All required and advisory MISRA C++ coding rules.

SQO-subset1

A small subset of MISRA C++ rules. In Polyspace Code
Prover, observing these rules can reduce the number of
unproven results.

SQO-subset2

A second subset of rules with indirect impact on the
selectivity in addition to SQO-subset1. In Polyspace Code
Prover, observing the additional rules can further reduce
the number of unproven results.

custom A specified set of MISRA C++ coding rules.

JSF C++

Option Description

shall-rules Shall rules are mandatory requirements. These rules
require verification.

 Activate Coding Rules Checker

3-5

Option Description

shall-will-rules All Shall and Will rules. Will rules are intended to be
mandatory requirements. However, these rules do not
require verification.

all-rules All Shall, Will, and Should rules. Should rules are
advisory rules.

custom A set of JSF C++ coding rules that you specify.

5 If you select Check custom rules, specify the path to your custom rules file or click
Edit to create one.

When rules checking is complete, the software displays the coding rule violations in
purple on the Results Summary pane.

Related Examples
• “Select Specific MISRA or JSF Coding Rules” on page 3-6
• “Create Custom Coding Rules” on page 3-9
• “Exclude Files From Analysis” on page 3-12

More About
• “Rule Checking” on page 2-2

3 Check Coding Rules from the Polyspace Environment

3-6

Select Specific MISRA or JSF Coding Rules

This example shows how to specify a subset of MISRA or JSF rules for the coding rules
checker. If you select custom from the MISRA or JSF drop-down list, you must provide a
file that specifies the rules to check.

1 Open the project configuration.
2 In the Configuration tree view, select Coding Rules & Code Metrics.
3 Select the check box for the type of coding rules you want to check.
4 From the corresponding drop-down list, select custom. The software displays a new

field for your custom file.
5 To the right of this field, click Edit. A New File window opens, displaying a table of

rules.

 Select Specific MISRA or JSF Coding Rules

3-7

6 If you already have a customized rule file you want to edit, reload your customization

using the button.
7 Select the rules you want to check.

You can select categories of rules (required, advisory, mandatory), subsets of rules by
rule chapter, or individual rules.

8 When you are finished, click OK.

3 Check Coding Rules from the Polyspace Environment

3-8

9 For new files, use the Save As dialog box the opens to save your customization as a
rules file.

10 In the Configuration window, the full path to the rules file appears in the custom
field. To reuse this customized set of rules for other projects, enter this path name in
the dialog box.

Related Examples
• “Activate Coding Rules Checker” on page 3-2
• “Create Custom Coding Rules” on page 3-9

More About
• “Rule Checking” on page 2-2

 Create Custom Coding Rules

3-9

Create Custom Coding Rules

This example shows how to create a custom coding rules file. You can use this file to
check names or text patterns in your source code against custom rules that you specify.
For each rule, you specify a pattern in the form of a regular expression. The software
compares the pattern against identifiers in the source code and determines whether the
custom rule is violated.

1 Create Coding Rules File

1 Create a Polyspace project. Add printInitialValue.c to the project.
2 On the Configuration pane, select Coding Rules & Code Metrics. Select the

Check custom rules box.
3

Click .

The New File window opens, displaying a table of rule groups.
4 Clear the Custom rules check box to turn off checking of all custom rules.
5 Expand the 4 Structs node. For the option 4.3 All struct fields must follow

the specified pattern:

Column Title Action

Status Select .
Convention Enter All struct fields must

begin with s_ and have capital

letters or digits

Pattern Enter s_[A-Z0-9_]+
Comment Leave blank. This column is for

comments that appear in the coding
rules file alone.

2 Review Coding Rule Violations

1 Save the file and run the verification. On the Results Summary pane, you see
two violations of rule 4.3. Select the first violation.

a On the Source pane, the line int a; is marked.

3 Check Coding Rules from the Polyspace Environment

3-10

b On the Result Details pane, you see the error message you had entered,
All struct fields must begin with s_ and have capital

letters

2 Right-click on the Source pane and select Open Editor. The file
printInitialValue.c opens in the Code Editor pane or an external text
editor depending on your Preferences.

3 In the file, replace all instances of a with s_A and b with s_B. Rerun the
verification.

The custom rule violations no longer appear on the Results Summary pane.

Related Examples
• “Activate Coding Rules Checker” on page 3-2
• “Select Specific MISRA or JSF Coding Rules” on page 3-6
• “Exclude Files From Analysis” on page 3-12

More About
• “Rule Checking” on page 2-2
• “Format of Custom Coding Rules File” on page 3-11

 Format of Custom Coding Rules File

3-11

Format of Custom Coding Rules File

In a custom coding rules file, each rule appears in the following format:
N.n off|on

convention=violation_message

pattern=regular_expression

• N.n — Custom rule number, for example, 1.2.
• off — Rule is not considered.
• on — The software checks for violation of the rule. After verification, it displays the

coding rule violation on the Results Summary pane.
• violation_message — Software displays this text in an XML file within the

Results/Polyspace-Doc folder.
• regular_expression — Software compares this text pattern against a source code

identifier that is specific to the rule. See “Custom Coding Rules”.

The keywords convention= and pattern= are optional. If present, they apply to
the rule whose number immediately precedes these keywords. If convention= is not
given for a rule, then a standard message is used. If pattern= is not given for a rule,
then the default regular expression is used, that is, .*.

Use the symbol # to start a comment. Comments are not allowed on lines with the
keywords convention= and pattern=.

The following example contains three custom rules: 1.1, 8.1, and 9.1.
Custom rules configuration file

1.1 off # Disable custom rule number 1.1

8.1 on # Violation of custom rule 8.1 produces a warning

convention=Global constants must begin by G_ and must be in capital letters.

pattern=G_[A-Z0-9_]*

9.1 on # Non-adherence to custom rule 9.1 produces a warning

convention=Global variables should begin by g_.

pattern=g_.*

Related Examples
• “Create Custom Coding Rules” on page 3-9

3 Check Coding Rules from the Polyspace Environment

3-12

Exclude Files From Analysis

This example shows how to exclude certain files from defect and coding rules checking.

1 Open the project configuration.
2 In the Configuration tree view, select Inputs & Stubbing.
3 Select the Files and folders to ignore check box.
4 From the corresponding drop-down list, select one of the following:

• all-headers (default) — Excludes header files in the Include folders of your
project. For example .h or .hpp files.

• all — Excludes all include files in the Include folders of your project. For
example, if you are checking a large code base with standard or Visual headers,
excluding include folders can significantly improve the speed of code analysis.

• custom — Excludes files or folders specified in the File/Folder view. To add

files to the custom File/Folder list, select to choose the files and folders to
exclude. To remove a file or folder from the list of excluded files and folders, select

the row. Then click .

Related Examples
• “Activate Coding Rules Checker” on page 3-2

More About
• “Rule Checking” on page 2-2

 Allow Custom Pragma Directives

3-13

Allow Custom Pragma Directives

This example shows how to exclude custom pragma directives from coding rules
checking. MISRA C rule 3.4 requires checking that pragma directives are documented
within the documentation of the compiler. However, you can allow undocumented
pragma directives to be present in your code.

1 Open project configuration.
2 In the Configuration tree view, select Coding Rules & Code Metrics.
3

To the right of Allowed pragmas, click .

In the Pragma view, the software displays an active text field.
4 In the text field, enter a pragma directive.
5

To remove a directive from the Pragma list, select the directive. Then click .

Related Examples
• “Activate Coding Rules Checker” on page 3-2

More About
• “Rule Checking” on page 2-2

3 Check Coding Rules from the Polyspace Environment

3-14

Specify Boolean Types

This example shows how to specify data types you want Polyspace to consider as Boolean
during MISRA C rules checking. The software applies this redefinition only to data types
defined by typedef statements.

The use of this option is related to checking of the following rules:

• MISRA C:2004 and MISRA AC AGC —12.6, 13.2, 15.4.

For more information, see “MISRA C:2004 and MISRA AC AGC Coding Rules” on
page 2-14.

• MISRA C:2012 — 10.1, 10.3, 10.5, 14.4 and 16.7

1 Open project configuration.
2 In the Configuration tree view, select Coding Rules & Code Metrics.
3

To the right of Effective boolean types, click .

In the Type view, the software displays an active text field.
4 In the text field, specify the data type that you want Polyspace to treat as Boolean.
5

To remove a data type from the Type list, select the data type. Then click .

Related Examples
• “Activate Coding Rules Checker” on page 3-2

More About
• “Rule Checking” on page 2-2

 Find Coding Rule Violations

3-15

Find Coding Rule Violations

This example shows how to check for coding rule violations alone.

1 Open project configuration.
2 In the Configuration tree view, select Coding Rules & Code Metrics. Activate

the desired coding rule checker.

For more information, see “Activate Coding Rules Checker” on page 3-2.
3 Checking for certain rules can cause the analysis to run longer than usual. Disable

those rules if you want.

For more information, see “Rules to Disable for Faster Analysis” on page 3-21.
4 Specify that the analysis must not look for defects.

• In the Configuration tree view, select Bug Finder Analysis.
• Clear the Find defects check box.

5
Click to run the coding rules checker without checking defects.

Related Examples
• “Activate Coding Rules Checker” on page 3-2
• “Select Specific MISRA or JSF Coding Rules” on page 3-6
• “Review Coding Rule Violations” on page 3-16

More About
• “Rule Checking” on page 2-2

3 Check Coding Rules from the Polyspace Environment

3-16

Review Coding Rule Violations

This example shows how to review coding rule violations once code analysis is complete.
After analysis, the Results Summary pane displays the rule violations with a

• symbol for predefined coding rules, MISRA or JSF.
• symbol for custom coding rules.

1 Select a coding-rule violation on the Results Summary pane.
2 On the Result Details pane, view the location and description of the violated rule.

In the source code, the line containing the violation appears highlighted.

3
For MISRA C: 2012 rules, on the Result Details pane, click the icon to see the
rationale for the rule. In some cases, you can also see code examples illustrating the
violation.

4 Review the violation in your code.

a Determine whether you must fix the code to avoid the violation.
b If you choose to retain the code, on the Result Details pane, add a comment

explaining why you retain the code. This comment helps you or other reviewers
avoid reviewing the same coding rule violation twice.

You can also assign a Severity and Status to the coding rule violation.
5 After you have fixed or justified the coding rule violations, run the analysis again.

 Review Coding Rule Violations

3-17

Related Examples
• “Activate Coding Rules Checker” on page 3-2
• “Find Coding Rule Violations” on page 3-15
• “Filter and Group Coding Rule Violations” on page 3-18

3 Check Coding Rules from the Polyspace Environment

3-18

Filter and Group Coding Rule Violations

This example shows how to use filters in the Results Summary pane to focus on
specific kinds of coding rule violations. By default, the software displays both coding rule
violations and defects.

In this section...

“Filter Coding Rules” on page 3-18
“Group Coding Rules” on page 3-18
“Suppress Certain Rules from Display in One Click” on page 3-18

Filter Coding Rules

1 On the Results Summary pane, place your cursor on the Check column header.
Click the filter icon that appears.

2 From the context menu, clear the All check box.
3 Select the violated rule numbers that you want to focus on.
4 Click OK.

Group Coding Rules

1 On the Results Summary pane, select Group by > Family.

The rules are grouped by numbers. Each group corresponds to a certain code
construct.

2 Expand the group nodes to select an individual coding rule violation.

Suppress Certain Rules from Display in One Click

Instead of filtering individual rules from display each time you open your results, you can
limit the display of rule violations in one click. To limit the display of rule violations, use
the Show menu on the Results Summary pane. You can create your own options on
this menu. You can share the option file to help developers in your organization review
violations of at least certain coding rules.

 Filter and Group Coding Rule Violations

3-19

1 In the Polyspace user interface, select Tools > Preferences.
2 On the Review Scope tab, do one of the following:

• To add predefined options to the Show menu, select Include Quality
Objectives Scopes.

The Scope Name list shows additional options, HIS, SQO-4, SQO-5, and SQO-6.
Select an option to see which rules are suppressed from display.

In addition to coding rule violations, the options impose limits on the display of
code metrics and defects.

• To create your own option on the Show menu, select New. Save your option file.

On the left pane, select a rule set such as MISRA C:2012. On the right pane, to
suppress a rule from display, clear the box next to the rule.

To suppress all rules belonging to a group such as The essential type model,
clear the box next to the group name. For more information on the groups, see
“Coding Rules”. If only a fraction of rules in a group is selected, the check box
next to the group name displays a symbol.

To suppress all rules belonging to a category such as advisory, clear the box
next to the category name on the top of the right pane. If only a fraction of rules
in a category is selected, the check box next to the category name displays a
symbol.

3 Check Coding Rules from the Polyspace Environment

3-20

3 Select Apply or OK.

On the Results Summary pane, the Show menu displays the additional options.
4 Select the option that you want. The rules that you suppress do not appear on the

Results Summary pane.

Related Examples
• “Activate Coding Rules Checker” on page 3-2
• “Review Coding Rule Violations” on page 3-16

 Rules to Disable for Faster Analysis

3-21

Rules to Disable for Faster Analysis

Checking for the following coding rules can cause the analysis to run longer than usual.
To check these rules, Polyspace Bug Finder must check for certain defects, too.

For faster analysis, you can disable the checking of these rules if you want. For more
information, see “Select Specific MISRA or JSF Coding Rules” on page 3-6.

MISRA C: 2004 and MISRA AC AGC

Rule Definition

MISRA C: 2004 Rule 9.1

MISRA AC AGC Rule 9.1

All automatic variables shall have been assigned a
value before being used.

MISRA C: 2004 Rule 21.1

MISRA AC AGC Rule 21.1

Minimization of runtime failures shall be ensured
by the use of at least one of:

• Static verification tools/techniques.
• Dynamic verification tools/techniques.
• Explicit coding of checks to handle runtime

faults.

For more information, see “MISRA C:2004 and MISRA AC AGC Coding Rules” on page
2-14.

MISRA C: 2012

Rule Definition

MISRA C:2012 Directive 4.1 Run-time failures shall be minimized.
MISRA C:2012 Directive 4.13 Functions which are designed to provide operations

on a resource should be called in an appropriate
sequence.

MISRA C:2012 Rule 2.2 There shall be no dead code.
MISRA C:2012 Rule 9.1 The value of an object with automatic storage

duration shall not be read before it has been set.

3 Check Coding Rules from the Polyspace Environment

3-22

Rule Definition

MISRA C:2012 Rule 18.1 A pointer resulting from arithmetic on a pointer
operand shall address an element of the same array
as that pointer operand.

MISRA C:2012 Rule 22.1 All resources obtained dynamically by means of
Standard Library functions shall be explicitly
released.

MISRA C:2012 Rule 22.2 A block of memory shall only be freed if it was
allocated by means of a Standard Library function.

MISRA C:2012 Rule 22.3 The same file shall not be open for read and write
access at the same time on different streams.

MISRA C:2012 Rule 22.4 There shall be no attempt to write to a stream
which has been opened as read-only.

MISRA C:2012 Rule 22.6 The value of a pointer to a FILE shall not be used
after the associated stream has been closed.

4

Find Bugs From the Polyspace
Environment

• “Choose Specific Defects” on page 4-2
• “Run Local Analysis” on page 4-3
• “Run Remote Batch Analysis” on page 4-4
• “Monitor Analysis” on page 4-5
• “Specify Results Folder” on page 4-6

4 Find Bugs From the Polyspace Environment

4-2

Choose Specific Defects

There are two preset configurations for Bug Finder defects, but you can also customize
which defects to check for during the analysis.

1 On the Configuration pane, select Bug Finder Analysis.
2 From the Find defects menu, select a set of defects. The options are:

• default for the default list of defects. This list contains defects that are
applicable to most coding projects. To see the defects in the default list, expand
the nodes.

• all for all defects.
• custom to add defects to the default list or remove defects from it.

 Run Local Analysis

4-3

Run Local Analysis

Before running an analysis from the Polyspace interface, you must set up your project’s
source files and analysis options. For more information, see “Create New Project” on page
1-6.

1 Select a project to analyze.
2

Click the button.
3 Monitor the analysis on the Output Summary tab.

During a Polyspace Bug Finder analysis, the software first compiles the project and
looks for coding rule errors. If the files have compilation errors, a message appears
in the Output Summary pane and the offending files are ignored during the later
analysis stages. Files with compilation problems do not appear in the results.

4 Once some results are available, start reviewing the results by selecting the link

in the Output Summary window or by clicking the button on the
toolbar. This button reactivates as more results are ready.

5 If you viewed some of the results during the analysis, click the toolbar button

 to load the rest of your results.

If you did not load results during the analysis, the Results Summary tab
automatically opens with your completed results.

Related Examples
• “Run Remote Batch Analysis” on page 4-4
• “Create New Project” on page 1-6
• “Open Results” on page 5-2
• “Review and Fix Results” on page 5-24

4 Find Bugs From the Polyspace Environment

4-4

Run Remote Batch Analysis

Before running a batch analysis, you must set up your project’s source files, analysis
options, and remote analysis settings. If you have not done so, see “Create New Project”
on page 1-6 and “Set Up Polyspace Metrics”.

1 Select a project to analyze.
2 On the Configuration pane, select Distributed Computing.
3 Select Batch.
4 If you want to store your results in the Polyspace Metrics repository, select Add to

results repository.

Otherwise, clear this check box.
5

Select the button.
6 To monitor the analysis, select Tools > Open Job Monitor.

Once the analysis is complete, you can open your results from the Results folder, or
download them from Polyspace Metrics.

Related Examples
• “Open Results” on page 5-2
• “Download Results From Polyspace Metrics” on page 5-6

 Monitor Analysis

4-5

Monitor Analysis

To monitor the progress of a local analysis, use the following panes in the Polyspace Bug
Finder interface. To open or close one of the tabs, select Window > Show/Hide View.

• Output Summary — Displays progress of verification, compile phase messages and
errors. To search for a term, in the Search field, enter the required term. Click the up
or down arrow to move sequentially through occurrences of the term.

• Full Log — This tab displays messages, errors, and statistics for the phases of the
analysis. To search for a term, in the Search field, enter the required term. Click the
up arrow or down arrow to move sequentially through occurrences of this term.

At the end of a local analysis, the Dashboard tab displays statistics, for example, code
coverage and check distribution.

To monitor the progress of a remote analysis:

1 From the Polyspace interface, select Tools > Open Job Monitor.
2 In the Polyspace Job Monitor, follow your queued job to monitor progress.

4 Find Bugs From the Polyspace Environment

4-6

Specify Results Folder

By default, Polyspace Bug Finder saves your results in the same directory as your project
in a folder called Results. Each subsequent analysis overwrites the old results.

However, to specify a different location for results:

1 On the Project Browser, right-click the Results folder.
2 Select Choose a Result Folder.
3 In the Choose a Result Folder window, navigate to the new results folder and click

Select.

On the Project Browser, the new results folder appears.

The previous results folder disappears from the Project Browser. However, the
results have not been deleted, just removed from the Polyspace interface. To view the
previous results, use File > Open Result.

5

View Results in the Polyspace
Environment

• “Open Results” on page 5-2
• “View Results Summary in Polyspace Metrics” on page 5-4
• “Download Results From Polyspace Metrics” on page 5-6
• “Filter and Group Results” on page 5-9
• “Classification of Defects by Impact” on page 5-12
• “Limit Display of Defects” on page 5-20
• “Generate Reports” on page 5-22
• “Review and Fix Results” on page 5-24
• “Review Concurrency Defects” on page 5-27
• “Review Code Metrics” on page 5-30
• “Navigate to Root Cause of Defect” on page 5-34
• “Results Folder Contents” on page 5-37
• “Windows Used to Review Results” on page 5-38
• “Bug Finder Defect Groups” on page 5-52
• “HIS Metrics” on page 5-57
• “Common Weakness Enumeration from Bug Finder Defects” on page 5-59
• “Find CWE Identifiers from Defects” on page 5-61
• “Mapping Between CWE Identifiers and Defects” on page 5-63

5 View Results in the Polyspace Environment

5-2

Open Results

This example shows how to open Polyspace Bug Finder results. Before you open the
results, you must start a Polyspace Bug Finder analysis on your source files. The
analysis produces a results file with the extension .psbf.

In this section...

“Open Results From Active Project” on page 5-2
“Open Results File From File Browser” on page 5-2

Open Results From Active Project

Suppose that you have a project called Bug_Finder_Example open in the
Project Browser. After an analysis, the results appear under the project as
Result_Bug_Finder_Example. While a local analysis is running, you can start
reviewing your results in real time. After you start a local analysis, a button appears on
the toolbar to show you the status of the analysis:

•
 — The analysis is running. No results to load.

•
 — The analysis is running and new results are available to start

reviewing. Click this button to load the new results in the Results Summary. This
button reactivates every time more results are available.

•
 — The analysis is complete, but you have not loaded all results. Click

this button to load the last set of results.

If you do not view partial results during the analysis, at the end of the analysis,
your results open automatically. To manually open results, double-click
Result_Bug_Finder_Example.

Open Results File From File Browser

1 Select File > Open. The Open File browser opens.
2 Navigate to the result folder containing the file with extension .psbf. For example,

navigate to matlabroot\polyspace\examples\cxx\Bug_Finder_Example
\Results\.

 Open Results

5-3

3 Select the file. Click Open.

More About
• “Results Folder Contents” on page 5-37
• “Windows Used to Review Results” on page 5-38

5 View Results in the Polyspace Environment

5-4

View Results Summary in Polyspace Metrics

This example shows how to view results summary in Polyspace Metrics. On the
Configuration pane, under Distributed Computing, if you select Add to results
repository, after remote analysis, you can view a summary of the results in Polyspace
Metrics.

Open Polyspace Metrics

In the address bar of your Web browser, enter the following URL:

protocol:// ServerName: PortNumber

• protocol is either http (default) or https. To use HTTPS, you must set up the
configuration file and the Metrics and Remote Server Settings.

• ServerName is the name or IP address of your Polyspace Metrics server.
• PortNumber is the Web server port number (default 8080)

On the webpage, you can view the projects saved to your Polyspace Metrics repository.

View Results Summary

1 Select the Projects tab.
2 To view the results summary for your project, on the Projects column, select the

project name.

The results summary for the project appears on the webpage under the Summary
tab. The Confirmed Defects column lists the number of coding rule violations or
checks that you have reviewed.

 View Results Summary in Polyspace Metrics

5-5

3 To view the results in more detail, select the tabs:

• Code Metrics: Metrics such as number of lines, header files and function calls.
• Coding Rules: Description of coding rule violations
• Bug-Finder: Description of defects detected by Polyspace Bug Finder

Related Examples
• “Set Up Polyspace Metrics”
• “Download Results From Polyspace Metrics” on page 5-6
• “Review and Fix Results” on page 5-24

5 View Results in the Polyspace Environment

5-6

Download Results From Polyspace Metrics

This example shows how to download results from Polyspace Metrics. On the
Configuration pane, under Distributed Computing, if you select Add to results
repository, after remote analysis, you can view a summary of the results in Polyspace
Metrics.

Open Polyspace Metrics

In the address bar of your Web browser, enter the following URL:

protocol:// ServerName: PortNumber

• protocol is either http (default) or https. To use HTTPS, you must set up the
configuration file and the Metrics and Remote Server Settings.

• ServerName is the name or IP address of your Polyspace Metrics server.
• PortNumber is the Web server port number (default 8080)

On the webpage, you can view the projects saved to your Polyspace Metrics repository.

Download Results

1 Select the Projects tab.
2 To view the results summary for your project, on the Projects column, select the

project name.

The results summary for the project appears on the webpage under the Summary
tab.

 Download Results From Polyspace Metrics

5-7

3 To download results:

• For an individual file, on the Verification column, select the name of the file.
• For a group of files:

a Right-click on the row containing a file in the group. From the context menu,
select Add To Module.

b Enter the name of your module in the dialog box. Click OK.

The name of the module appears on the Verification column.

5 View Results in the Polyspace Environment

5-8

c Drag and drop the other files in the group to the module.
d Select the name of the module.

• For all files in the project, on the Verification column, select the version number
of the project.

The results open on the Results Summary pane in Polyspace Bug Finder. The filter
Show > Web checks on this pane indicate that you have downloaded the results from
Polyspace Metrics.

Related Examples
• “Set Up Polyspace Metrics”
• “View Results Summary in Polyspace Metrics” on page 5-4
• “Review and Fix Results” on page 5-24

 Filter and Group Results

5-9

Filter and Group Results

This example shows how to filter and group defects on the Results Summary pane. To
organize your review of results, use filters and groups when you want to:

• Review only high-impact defects.

For more information on impact, see “Classification of Defects by Impact” on page
5-12.

• Review certain types of defects in preference to others.

For instance, you first want to address the defects resulting from Missing or invalid
return statement.

• Review only new results found since the last analysis.
• Not address the full set of coding rule violations detected by the coding rules checker.
• Review only those defects that you have already assigned a certain status.

For instance, you want to review only those defects to which you have assigned the
status, Investigate.

• Review defects from a particular file or function. Because of continuity of code,
reviewing these defects together can help you organize your review process.

If you have written the code for a particular source file, you can review the defects
only in that file.

Filter Results

1 To review only new results found since the last verification, on the Results
Summary pane, select New results.

2 To suppress code metrics from your results, on the Results Summary pane, select
Show > Defects & Rules.

You can increase the options on the Show menu or create your own options. For
examples, see:

• “Suppress Certain Rules from Display in One Click” on page 3-18
• “Limit Display of Defects” on page 5-20
• “Review Code Metrics” on page 5-30

5 View Results in the Polyspace Environment

5-10

3
For all other filters, click the icon on the appropriate column.

Item to Filter Column

Results in a certain file or function File or Function
Results with a certain severity or status Severity or Status
Results in a certain group such as
numerical or data flow

Group

Results with a certain impact Information
Results that correspond to certain CWE
IDs.

CWE ID

For more information, see “Find CWE
Identifiers from Defects” on page
5-61.

4 Clear All. Select the boxes for the results that you want displayed.

Alternatively, clear the boxes for the results that you do not want displayed.

Note: You can also apply multiple filters.

Group Results

On the Results Summary pane:

• To show results without grouping, select Group by > None.
• To show results grouped by result type, select Group by > Family.

• The defects are organized by the defect groups. For more information on the
groups, see “Defects”.

• The coding rule violations are grouped by type of coding rule. For more
information, see “Coding Rules”.

• The code metrics are grouped by scope of metric. For more information, see “Code
Metrics”.

• To show results grouped by file, select Group by > File.

 Filter and Group Results

5-11

Within each file, the results are grouped by function. The results that are not
associated with a particular function are grouped under File Scope.

• For C++ code, to show results grouped by class, select Group by > Class. The results
that are not associated with a particular class are grouped under Global Scope.

Within each class, the results are grouped by method.

Related Examples
• “Review and Fix Results” on page 5-24

More About
• “Windows Used to Review Results” on page 5-38

5 View Results in the Polyspace Environment

5-12

Classification of Defects by Impact

To prioritize your review of Polyspace Bug Finder defects, you can use the Impact
attribute assigned to the defect. This attribute appears on:

• The Dashboard pane, in a Defect distribution by impact pie chart.

You can view at a glance whether you have many high impact defects.
• The Results Summary pane, in the Information column. When you select Group

by > None, the defects are sorted by impact.

You can filter out low and/or medium impact defects using this column or through the
Review Scope tab in your preferences. For more information, see “Filter and Group
Results” on page 5-9.

• The Result Details pane, beside the defect name.

The impact is assigned to a defect based on the following considerations:

• Criticality, or whether the defect is likely to cause a code failure.

If a defect is likely to cause a code to fail, it is treated as a high impact defect. If
the defect currently does not cause code failure but can cause problems with code
maintenance in the future, it is a low impact defect.

• Certainty, or the rate of false positives.

For instance, the defect Integer division by zero is a high-impact defect because it is
almost certain to cause a code crash. On the other hand, the defect Dead code has low
impact because by itself, presence of dead code does not cause code failure. However, the
dead code can hide other high-impact defects.

You cannot change the impact assigned to a defect.

High Impact Defects

The following list shows the high-impact defects.

Numerical

• Float conversion overflow
• Float division by zero

 Classification of Defects by Impact

5-13

• Integer conversion overflow
• Integer division by zero
• Invalid use of standard library floating point routine
• Invalid use of standard library integer routine

Static memory

• Array access out of bounds
• Buffer overflow from incorrect string format specifier
• Destination buffer overflow in string manipulation
• Destination buffer underflow in string manipulation
• Invalid use of standard library memory routine
• Invalid use of standard library string routine
• Null pointer
• Pointer access out of bounds
• Pointer or reference to stack variable leaving scope
• Use of path manipulation function without maximum sized buffer checking
• Wrong allocated object size for cast

Dynamic memory

• Deallocation of previously deallocated pointer
• Invalid free of pointer
• Use of previously freed pointer

Data flow

• Non-initialized pointer
• Non-initialized variable

Resource management

• Closing a previously closed resource
• Resource leak
• Use of previously closed resource
• Writing to read-only resource

5 View Results in the Polyspace Environment

5-14

Programming

• Assertion
• Declaration mismatch
• Invalid use of == operator
• Invalid use of floating point operation
• Invalid use of standard library routine
• Invalid va_list argument
• Possible misuse of sizeof
• Possibly unintended evaluation of expression because of operator precedence rules
• Variable length array with nonpositive size
• Writing to const qualified object
• Wrong type used in sizeof

Concurrency

• Data race
• Deadlock
• Double lock
• Double unlock
• Missing lock
• Missing unlock

Security

• Use of non-secure temporary file

Object Oriented

• Base class assignment operator not called
• Copy constructor not called in initialization list
• Object slicing

Medium Impact Defects

The following list shows the medium-impact defects.

 Classification of Defects by Impact

5-15

Numerical

• Integer overflow
• Sign change integer conversion overflow

Static memory

• Unreliable cast of function pointer
• Unreliable cast of pointer

Dynamic memory

• Memory leak

Data flow

• Pointer to non-initialized value converted to const pointer
• Unreachable code
• Useless if

Programming

• Bad file access mode or status
• Copy of overlapping memory
• Exception caught by value
• Exception handler hidden by previous handler
• Improper array initialization
• Incorrect pointer scaling
• Invalid assumptions about memory organization
• Invalid use of = operator
• Overlapping assignment
• Standard function call with incorrect arguments
• Use of memset with size argument zero

Concurrency

• Data race including atomic operations

5 View Results in the Polyspace Environment

5-16

Security

• Deterministic random output from constant seed
• Execution of a binary from a relative path can be controlled by an external actor
• File access between time of check and use (TOCTOU)
• File manipulation after chroot() without chdir(“/”)
• Incorrect order of network connection operations
• Load of library from a relative path can be controlled by an external actor
• Mismatch between data length and size
• Predictable random output from predictable seed
• Sensitive data printed out
• Sensitive heap memory not cleared before release
• Uncleared sensitive data in stack
• Unsafe standard encryption function
• Unsafe standard function
• Vulnerable permission assignments
• Vulnerable pseudo-random number generator

Tainted data

• Array access with tainted index
• Command executed from externally controlled path
• Execution of externally controlled command
• Host change using externally controlled elements
• Library loaded from externally controlled path
• Loop bounded with tainted value
• Memory allocation with tainted size
• Tainted sign change conversion
• Tainted size of variable length array
• Use of externally controlled environment variable

Object Oriented

• Base class destructor not virtual

 Classification of Defects by Impact

5-17

• Incompatible types prevent overriding
• Member not initialized in constructor
• Missing virtual inheritance
• Partial override of overloaded virtual functions
• Return of non const handle to encapsulated data member
• Self assignment not tested in operator

Low Impact Defects

The following list shows the low-impact defects.

Numerical

• Float overflow
• Shift of a negative value
• Shift operation overflow
• Unsigned integer conversion overflow
• Unsigned integer overflow

Static memory

• Arithmetic operation with NULL pointer

Dynamic memory

• Unprotected dynamic memory allocation

Data flow

• Code deactivated by constant false condition
• Dead code
• Missing return statement
• Partially accessed array
• Static uncalled function
• Variable shadowing
• Write without a further read

5 View Results in the Polyspace Environment

5-18

Programming

• Format string specifiers and arguments mismatch
• Call to memset with unintended value
• Missing null in string array
• Modification of internal buffer returned from nonreentrant standard function
• Qualifier removed in conversion

Security

• Missing case for switch condition
• Umask used with chmod-style arguments
• Use of dangerous standard function
• Vulnerable path manipulation
• Function pointer assigned with absolute address
• Use of obsolete standard function

Tainted data

• Pointer dereference with tainted offset
• Tainted division operand
• Tainted NULL or non-null-terminated string
• Tainted modulo operand
• Tainted string format
• Use of tainted pointer

Good practice

• Delete of void pointer
• Hard coded buffer size
• Hard coded loop boundary
• Large pass-by-value argument
• Line with more than one statement
• Unused parameter
• Use of setjmp/longjmp

 Classification of Defects by Impact

5-19

Object Oriented

• *this not returned in copy assignment operator
• Missing explicit keyword

5 View Results in the Polyspace Environment

5-20

Limit Display of Defects

This example shows how to control the number and type of defects displayed on the
Results Summary pane. To reduce your review effort, you can limit the number of
defects to display for certain checks or suppress them altogether.

To prevent the analysis from looking for some defects, see “Choose Specific Defects” on
page 4-2.

If you want to change your analysis configuration, you can still change which defects are
displayed in your results. There are two ways to filter defects from your results:

• Filter individual defects from display after each run.

For more information, see “Filter and Group Results” on page 5-9.
• Create a set of filters that you can apply in one click.

This example shows the second approach.

1 Select Tools > Preferences.
2 On the Review Scope tab, create your filter file.

a Select New. Save your filter file.
b On the left pane, select Defect. On the right pane, to suppress a defect

completely, clear the box for the defect. To suppress a defect partly, specify a
percentage less than 100 to display.

Instead of a percentage, you can specify a number or the string ALL. To specify a
number, clear the box Specify percentage of checks.

To suppress all defects belonging to a category such as Numerical, clear the box
next to the category name. For more information on the categories, see “Defects”.
If only a fraction of defects in a category are selected, the check box next to the
category name displays a symbol.

To suppress all defects with a certain impact such as Low, clear the box next
to the impact. For more information on impacts, see “Classification of Defects
by Impact” on page 5-12. If only a fraction of defects with a certain impact are
selected, the check box next to the impact displays a symbol.

 Limit Display of Defects

5-21

3 Select Apply or OK.

On the Results Summary pane, the Show menu displays additional options.
4 Select the option corresponding to the filters that you want. Only the number or

percentage of defects that you specify remain on the Results Summary pane.

• If you specify an absolute number, Polyspace displays that number of defects.
• If you specify a percentage, Polyspace displays that percentage of the total

number of defects.

5 View Results in the Polyspace Environment

5-22

Generate Reports

This example shows how to generate reports for a Polyspace Bug Finder analysis.

1 Open your results file.
2 Select Reporting > Run Report.

The Run Report dialog box opens.

3 In the Select Reports section, select the types of reports that you want to generate.
Press the Ctrl key to select multiple types. For example, you can select BugFinder
and CodeMetrics.

4 Select the Output folder in which to save the report.
5 Select an Output format for the report.
6 Click Run Report.

 Generate Reports

5-23

The software creates the specified report and opens it.

See Also
“Generate report (C/C++)” | “Report template (C/C++)” | “Output format (C/C++)”

5 View Results in the Polyspace Environment

5-24

Review and Fix Results

This example shows how to review and comment your Bug Finder results. When
reviewing results, you can assign a status to the defects and enter comments to describe
the results of your review. These actions help you to track the progress of your review
and avoid reviewing the same defect twice.

In this section...

“Assign and Save Comments” on page 5-24
“Import Review Comments from Previous Analysis” on page 5-25

Assign and Save Comments

1 On the Results Summary pane, select the defect that you want to review.

The Result Details pane displays information about the current defect.

2 Investigate the result further. Determine whether to fix your code, review the result
later, or retain the code but provide some explanation.

3 On the Results Summary or Result Details pane, provide the following review
information for the result:

• Severity to describe how critical you consider the issue.
• Status to describe how you intend to address the issue.

 Review and Fix Results

5-25

You can also create your own status or associate justification with an existing
status. Select Tools > Preferences and create or modify statuses on the Review
Statuses tab.

• Comment to describe any other information about the result.
4 To provide review information for several results together, select the results. Then,

provide review information for a single result.

To select the results in a group:

• If the results are contiguous, left-click the first result. Then Shift-left click the
last result.

To group certain results together, use the column headers on the Results
Summary pane.

• If the results are not contiguous, Ctrl-left click each result.
• If the results belong to the same group and have the same color, right-click one

result. From the context menu, select Select All Type Results.

For instance, select Select All "Memory leak" Results.
5 To save your review comments, select File > Save. Your comments are saved with

the verification results.

Import Review Comments from Previous Analysis

After you have reviewed verification results, you can reuse your review comments for
subsequent verifications. By default, Polyspace Code Prover imports comments from the
last verification on the module.

Disable Automatic Comment Import from Last Analysis

1 Select Tools > Preferences, which opens the Polyspace Preferences dialog box.
2 Select the Project and Results Folder tab.
3 Under Import Comments, clear Automatically import comments from last

verification.
4 Click OK.

After you set this preference, for every run, the software imports review comments
from the last run.

5 View Results in the Polyspace Environment

5-26

Import Comments from Another Analysis

1 Open your verification results.
2 Select Tools > Import Comments.
3 Navigate to the folder containing your previous results.
4 Select the results file and then click Open.

The review comments from the previous results are imported into the current
results, and the Import checks and comments report opens showing the comments
that do not apply to the current analysis.

Related Examples
• “Filter and Group Results” on page 5-9
• “Copy and Paste Annotations” on page 1-61

More About
• “Windows Used to Review Results” on page 5-38

 Review Concurrency Defects

5-27

Review Concurrency Defects

This example shows how to review defects that arise only in a multitasking analysis.
For this example, use the results in the demo Bug_Finder_Example.psprj.
To load the demo in your Project Browser, under Help, select Examples >
Bug_Finder_Example.psprj.

Filter Concurrency Defects

1 Right-click any column header and select Group to add the Group column to your
Result Summary view.

2
On the Group column, select the icon.

3 From the filter menu, clear All. Select Concurrency.

Review Data Race Defects

1 Select the first Data race defect.

The Result Details pane lists the variable bad_glob1 that is:

• Shared between multiple tasks and written in at least one of the tasks
• Not protected against concurrent operations

On the Source pane, the variable declaration appears highlighted.
2 To navigate to each operation involving bad_glob1 in the source code, on the

Result Details pane, click the row corresponding to the operation in the table. The
lines with the operations are also highlighted in blue on the Source pane.

a To see if the access is in a critical section, use the Access Protections column.
If one of the accesses is in a critical section, to fix the Data race defect, you can
use the same critical section for the other accesses.

b To see which function contains the access, use the Scope column.
3 Select the second Data race defect.

The Result Details pane lists the variable bad_glob2 involved in the defect. You
can view similar information as the first Data race defect.

However, for this defect, the Access column on the Result Details pane lists why
the operation can be non-atomic.

5 View Results in the Polyspace Environment

5-28

Review Locking Defects

1 Select the Deadlock defect.

The Result Details pane lists the sequence of operations that cause the Deadlock.
You can see:

• The function call through which each task involved in the Deadlock enters a
critical section.

• The function call through which each task attempts to enter a critical section that
is already entered by another task.

2 To navigate to each operation in the source code, on the Result Details pane, click
the row corresponding to the operation in the table.

3 Select the Double lock defect.

The Result Details pane lists the sequence of operations that cause the Double
lock. You can see:

• The function call through which a task enters a critical section.
• The function call through which the task attempts to enter the same critical

section.
4 To navigate to each operation in the source code, on the Result Details pane, click

the row corresponding to the operation in the table.
5 Select the Missing unlock defect.

• The Source pane shows the function call that begins a critical section.
• On the Result Details pane, under the Event column, you can see which task

contains the critical section.

See Also
Data race including atomic operations | Data race | Deadlock | Double lock | Double
unlock | Missing lock | Missing unlock

Related Examples
• “Set Up Multitasking Analysis Manually” on page 1-52

 Review Concurrency Defects

5-29

More About
• “Modeling Multitasking Code” on page 1-47
• “Concurrency” on page 5-52

5 View Results in the Polyspace Environment

5-30

Review Code Metrics

This example shows how to review the code complexity metrics that Polyspace computes.
For information on the individual metrics, see “Code Metrics”.

Polyspace does not compute code complexity metrics by default. To compute them during
analysis, do the following:

• User interface: On the Configuration pane, select Coding Rules & Code
Metrics. Select Calculate Code Metrics.

• Command line: Use the option -code-metrics with the polyspace-bug-
finder-nodesktop command.

After analysis, the software displays code complexity metrics on the Results Summary
pane. You can:

• Specify limits for the metric values through Tools > Preferences.

If you impose limits on metrics, the Results Summary pane displays only those
metric values that violate the limits. Use predefined limits or assign your own limits.
If you assign your own limits, you can share the limits file to enforce coding standards
in your organization.

• Justify the value of a metric.

If a metric value exceeds specified limits and appears red, you can add a comment
with the rationale.

You can also suppress code metrics from the Results Summary display. Select Show >
Defects & Rules.

In this section...

“Impose Limits on Metrics” on page 5-30
“Comment and Justify Limit Violations” on page 5-33

Impose Limits on Metrics

1 Select Tools > Preferences.
2 On the Review Scope tab, do one of the following:

• To use a predefined limit, select Include Quality Objectives Scopes.

 Review Code Metrics

5-31

The Scope Name list shows the additional option HIS. The option HIS displays
the “HIS Metrics” on page 5-57 only. Select the option to see the limit values.

• To define your own limits, select New. Save your limits file.

On the left pane, select Code Metric. On the right, select a metric and specify a
limit value for the metric. Other than Comment Density, limit values are upper
limits.

To select all metrics in a category such as Function Metrics, select the box next
to the category name. For more information on the metrics categories, see “Code
Metrics”. If only a fraction of metrics in a category are selected, the check box
next to the category name displays a symbol.

5 View Results in the Polyspace Environment

5-32

3 Select Apply or OK.

On the Results Summary pane, the Show menu displays additional options.

 Review Code Metrics

5-33

• If you use predefined limits, the option HIS appears. This option displays code
metrics only.

• If you define your own limits, the option corresponding to your limits file name
appears.

4 Select the option corresponding to the limits that you want. Only metric values that
violate your limits appear on the Results Summary pane.

Note: To enforce coding standards across your organization, share your limits file that
you saved in XML format.

People in your organization can use the Open button on the Review Scope tab and
navigate to the location of the XML file.

Comment and Justify Limit Violations

Once you use the Show menu to display only metrics that violate limits, you can review
each violation.

1 On the Results Summary pane, select Group by > Family.

The code metrics appear together under one node.
2 Expand the node. Select each violation.

• On the Results Summary pane, in the Information column, you can see the
metric value.

• On the Result Details pane, you can see the metric value and a brief description
of the metric.

For more detailed descriptions and examples, select the icon.
3 On the Results Summary pane, add a comment and justification describing why

the violation occurs. For more information, see “Review and Fix Results” on page
5-24.

5 View Results in the Polyspace Environment

5-34

Navigate to Root Cause of Defect

Through the Polyspace Bug Finder user interface, you can navigate to the root cause of
a defect in your source code. If you select a result on the Results Summary pane, you
see the immediate location of the defect on the Source pane. However, the defect can be
related to previous statements in your source code.

For instance, a Non-initialized variable defect appears at the location where you
read a noninitialized variable. However, it is possible that you initialized the variable
previously. For instance, the initialization occurred in a branch of a previous if
statement and the variable is noninitialized only if that branch is not entered.

Navigate Code Sequence Causing Defect

Often, the Result Details pane shows the event history leading to the defect. To see the
code statement that the event describes, click the event.

On the Source pane, the statements are highlighted in blue and the corresponding line
numbers outlined in boxes.

On the Result Details pane, you can select the Variable trace box, if available. The
event sequence expands to show more events related to the defect. The statements that
the additional events describe are highlighted in light blue on the Source pane.

 Navigate to Root Cause of Defect

5-35

Navigate to Identifier Definition

Often, to diagnose a defect, you have to navigate to an identifier definition. On the
Source pane, right-click the identifier name. Select Go To Definition.

For instance, the C++ defect Object slicing appears at the location where you pass
a derived class object by value to a function. The function expects a base class object
as parameter. To diagnose this defect, you can navigate to the base and derived class
definitions.

To navigate to the derived class definition starting from the defect location:

1 Right-click the derived class object name and select Go To Definition.
2 In the derived class object definition, right-click the derived class name and select

Go To Definition.

Navigate to Identifier References

Often, to diagnose a defect, you have to see the locations where an identifier is used.

For instance, an if statement shows the Dead code defect. You want to understand
why the variable that controls entry to the if statement has a certain set of values.
Therefore, you want to see previous assignments to that variable.

To navigate to previous locations where an identifier is used:

1 Right-click the identifier name and select Search For All References.

The search results appear on the Search pane with the current location highlighted.
2 Click each search result, starting backward from the highlighted result.
3 The option Search for All References is not available in some cases. For instance,

if you right-click a C++ virtual function, this option is not available.

Use one of the following options to search for occurrences of the identifier name:

• Search For Identifier_name in Current Source File
• Search For Identifier_name in All Source Files

4 If reviewing a defect requires deeper navigation in your source code, you can create
a duplicate source code window that focuses on the defect while you navigate in the
original source code window.

5 View Results in the Polyspace Environment

5-36

a Right-click on the Source pane and select Create Duplicate Code Window.
b Right-click on the tab showing the duplicate file name and select New Vertical

Group.
c Perform the navigation steps in the original file window while the defect still

appears on the duplicate file window.
d

After reviewing the defect, click the button on the Results Summary pane
to return to the defect location in the original file window. Close the duplicate
window.

Related Examples
• “Review and Fix Results” on page 5-24

More About
• “Source” on page 5-44
• “Result Details” on page 5-50

 Results Folder Contents

5-37

Results Folder Contents

Every time you run an analysis, Polyspace generates files and folders that contain
information about configuration options and analysis results. The contents of results
folders depend on the configuration options and how the analysis was started.

By default, your results are saved in your project folder in a folder called Result. To use
a different folder, see “Specify Results Folder” on page 4-6.

Files in the Results Folder

Some of the files and folders in the results folder are described below:

• Polyspace_release_project_name_date-time.log — A log file associated with
each analysis.

• ps_results.psbf — An encrypted file containing your Polyspace results. Open this
file in the Polyspace environment to view your results.

• ps_sources.db — A non-encrypted database file listing source files and macros.
• drs-template.xml — A template generated when you use constraint specification.
• ps_comments.db — An encrypted database file containing your comments and

justifications.
• comments_bak — A subfolder used to import comments between results.
• .status and .settings — Two folders used to store files needed to relaunch the

analysis.
• Polyspace-Doc — When you generate a report, by default, your report is saved in

this folder with the name ProjectName_ReportType. For example, a developer
report in PDF format would be, myProject_Developer.pdf.

See Also
-results-dir

Related Examples
• “Specify Results Folder” on page 4-6
• “Open Results” on page 5-2

5 View Results in the Polyspace Environment

5-38

Windows Used to Review Results

In this section...

“Dashboard” on page 5-38
“Results Summary” on page 5-42
“Source” on page 5-44
“Result Details” on page 5-50

Dashboard

On the Source pane, the Dashboard tab provides statistics on the analysis results in a
graphical format.

When you open a results file in Polyspace, this tab is displayed by default. You can view
the following graphs:

• Code covered by analysis

From this graph you can obtain the following information:

• # Files analyzed: Ratio of analyzed files to total number of files. If a file contains
a compilation error, Polyspace Bug Finder does not analyze the file.

 Windows Used to Review Results

5-39

• # Functions analyzed: Ratio of analyzed functions to total number of functions
in the analyzed files. If the analysis of a function takes longer than a certain
threshold value, Polyspace Bug Finder does not analyze the function.

• # Lines of code: Total number of code lines in source files.
• # Lines without comments: Total number of code lines in source files excluding

lines that are only comments.
• # Header files: Total number of files included in your source files using

#include directive.
• Defect distribution by impact

From this pie chart, you can obtain a graphical visualization of the defect distribution
by impact. You can find at a glance whether the defects that Polyspace Bug Finder
found in your code are low-impact defects. For more information on impact, see
“Classification of Defects by Impact” on page 5-12.

• Defect distribution by category or file

5 View Results in the Polyspace Environment

5-40

From this graph you can obtain the following information.

 Category File

Top 10 The ten defect types with the highest
number of individual defects.

• Each column represents a defect
type and is divided into the:

• File with highest number of
defects of this type.

• File with second highest number
of defects of this type.

• All other files with defects of this
type.

Place your cursor on a column to see
the file name and number of defects
of this type in this file.

• The x-axis represents the number of
defects.

Use this view to organize your check
review starting at defect types with
more individual defects.

The ten source files with the highest
number of defects.

• Each column represents a file and is
divided into the:

• Defect type with highest number
of defects in this file.

• Defect type with second highest
number of defects in this file.

• All other defect types in this file.

Place your cursor on a column to see
the defect type name and number of
defects of this type in this file.

• The x-axis represents the number of
defects.

Use this view to organize your check
review starting at files with more
defects.

Bottom 10 The ten defect types with the lowest
number of individual defects. Each
column on the graph is divided the
same way as the Top 10 defect types.

Use this view to organize your check
review starting at defect types with
fewer individual defects.

The ten source files with the lowest
number of defects. Each column on the
graph is divided the same way as the
Top 10 files.

Use this view to organize your check
review starting at files with fewer
defects.

 Windows Used to Review Results

5-41

• Coding rule violations by rule or file

For every type of coding rule that you check (MISRA, JSF, or custom), the
Dashboard contains a graph of the rule violations.

From this graph you can obtain the following information.

 Category File

Top 10 The ten rules with the highest number
of violations.

• Each column represents a rule
number and is divided into the:

• File with highest number of
violations of this rule.

• File with second highest number
of violations of this rule.

• All other files with violations of
this rule.

Place your cursor on a column to
see the file name and number of
violations of this rule in the file.

• The x-axis represents the number of
rule violations.

Use this view to organize your review
starting at rules with more violations.

The ten source files containing the
highest number of violations.

• Each column represents a file and is
divided into the:

• Rule with highest number of
violations in this file.

• Rule with second highest number
of violations in this file.

• All other rules violated in this
file.

Place your cursor on a column to
see the rule number and number of
violations of the rule in this file.

• The x-axis represents the number of
rule violations.

Use this view to organize your review
starting at files with more rule
violations.

5 View Results in the Polyspace Environment

5-42

 Category File

Bottom 10 The ten rules with the lowest number
of violations. Each column on the graph
is divided in the same way as the Top
10 rules.

Use this view to organize your review
starting at rules with fewer violations.

The ten source files containing the
lowest number of rule violations. Each
column on the graph is divided in the
same way as the Top 10 files.

Use this view to organize your review
starting at files with fewer rule
violations.

For a list of supported coding rules, see “Supported MISRA C:2004 and MISRA AC
AGC Rules” on page 2-14, “Supported MISRA C++ Coding Rules” on page 2-68 and
“Supported JSF C++ Coding Rules” on page 2-96.

Results Summary

The Results Summary pane lists all defects along with their attributes. To organize
your results review, from the Group by list on this pane, select one of the following
options:

• None: Lists defects and coding rule violations without grouping. By default the
results are listed in order of severity.

• Family: Lists results grouped by grouping. For more information on the defects
covered by a group, see “Bug Finder Defect Groups” on page 5-52.

• Class: Lists results grouped by class. Within each class, the results are grouped
by method. The first group, Global Scope, lists results not occurring in a class
definition.

This option is available for C++ code only.
• File: Lists results grouped by file. Within each file, the results are grouped by

function.

For each defect, the Results Summary pane contains the defect attributes, listed in
columns:

Attribute Description

Family Group to which the defect belongs.

 Windows Used to Review Results

5-43

Attribute Description

ID Unique identification number of the
defect. In the default view on the Results
Summary pane, the defects appear sorted
by this number.

Type Defect or coding rule violation.
Group Category of the defect. For more

information on the defects covered by a
group, see “Polyspace Bug Finder Results”.

Check Description of the defect
File File containing the instruction where the

defect occurs
Class Class containing the instruction where the

defect occurs. If the defect is not inside a
class definition, then this column contains
the entry, Global Scope.

Function Function containing the instruction where
the defect occurs. If the function is a
method of a class, it appears in the format
class_name::function_name.

Severity Level of severity you have assigned to the
defect. The possible levels are:

• High

• Medium

• Low

• Not a defect

5 View Results in the Polyspace Environment

5-44

Attribute Description

Status Review status you have assigned to the
check. The possible statuses are:

• Fix

• Improve

• Investigate

• Justified

• No action planned

• Other

Comments Comments you have entered about the
check

To show or hide any of the columns, right-click anywhere on the column titles. From the
context menu, select or clear the title of the column that you want to show or hide.

Using this pane, you can:

• Navigate through the checks. For more information, see “Review and Fix Results” on
page 5-24.

• Organize your check review using filters on the columns. For more information, see
“Filter and Group Results” on page 5-9.

Source

The Source pane shows the source code with the defects colored in red and the
corresponding line number marked by .

 Windows Used to Review Results

5-45

Tooltips

Placing your cursor over a check displays a tooltip that provides range information for
variables, operands, function parameters, and return values.

Examine Source Code

On the Source pane, if you right-click a text string, the context menu provides options to
examine your code:

5 View Results in the Polyspace Environment

5-46

For example, if you right-click the variable i, you can use the following options to
examine and navigate through your code:

• Search "i" in Current Source — List occurrences of the string within the current
source file on the Search pane.

• Search "i" in All Source Files — List occurrences of the string within the source
files on the Search pane.

• Search For All References — List all references in the Search pane. The software
supports this feature for global and local variables, functions, types, and classes.

• Go To Definition — Go to the line of code that contains the definition of i. The
software supports this feature for global and local variables, functions, types, and
classes.

• Go To Line — Open the Go to line dialog box. If you specify a line number and click
Enter, the software displays the specified line of code.

• Expand All Macros or Collapse All Macros — Display or hide the content of
macros in current source file.

 Windows Used to Review Results

5-47

Expand Macros

You can view the contents of source code macros in the source code view. A code
information bar displays icons that identify source code lines with macros.

When you click a line with this icon, the software displays the contents of macros on that
line in a box.

5 View Results in the Polyspace Environment

5-48

To display the normal source code again, click the line away from the box, for example,
on the icon.

To display or hide the content of all macros:

1 Right-click anywhere on the source.
2 From the context menu, select either Expand All Macros or Collapse All Macros.

Note: The Result Details pane also allows you to view the contents of a macro if the
check you select lies within a macro.

Manage Multiple Files in Source Pane

You can view multiple source files in the Source pane.

Right-click on the Source pane toolbar.

 Windows Used to Review Results

5-49

From the Source pane context menu, you can:

• Close – Close the currently selected source file. You can also use the χ button to close
tabs.

• Close Others – Close all source files except the currently selected file.
• Close All – Close all source files.
• Next – Display the next view.
• Previous – Display the previous view.
• New Horizontal Group – Split the Source window horizontally to display the

selected source file below another file.
• New Vertical Group – Split the Source window vertically to display the selected

source file side-by-side with another file.
• Floating – Display the current source file in a new window, outside the Source pane.

View Code Block

On the Source pane, to highlight a block of code, click either its opening or closing brace.
If the brace itself is highlighted, click the brace twice.

5 View Results in the Polyspace Environment

5-50

Result Details

The Result Details pane contains comprehensive information about a specific defect. To
see this information, on the Results Summary pane, select the defect.

On this pane, you can also assign a Severity and Status to each check. You can also
enter comments to describe the results of your review. This action helps you track the
progress of your review and avoid reviewing the same check twice.

 Windows Used to Review Results

5-51

• The top right corner shows the file and function containing the defect, in the format
file_name/function_name.

• The yellow box contains the name of the defect with an explanation of why the defect
occurs.

• The Event column lists the sequence of code instructions causing the defect. The
Scope column lists the name of the function containing the instructions. The Line
column lists the line number of the instructions.

• The Variable trace check box allows you to see an additional set of instructions that
are related to the defect.

•
The button allows you to access documentation for the defect.

For more information, see “Navigate to Root Cause of Defect” on page 5-34.

5 View Results in the Polyspace Environment

5-52

Bug Finder Defect Groups

In this section...

“Concurrency” on page 5-52
“Data flow” on page 5-53
“Dynamic Memory” on page 5-53
“Good Practice” on page 5-53
“Numerical” on page 5-54
“Object Oriented” on page 5-54
“Programming” on page 5-54
“Resource Management” on page 5-54
“Static Memory” on page 5-55
“Security” on page 5-55
“Tainted data” on page 5-55

Concurrency

These defects are related to multitasking code.

Data Race Defects

The data race defects occur when multiple tasks operate on a shared variable without
protection. For the defect to occur:

• One of the operations must be a write operation.
• The operations must not be protected by the same mechanism.

For the specific defects, see “Concurrency Defects”.

Locking Defects

The locking defects occur when the critical sections are not set up appropriately. For
example:

• The critical sections are involved in a deadlock.
• A lock function does not have the corresponding unlock function.

 Bug Finder Defect Groups

5-53

• A lock function is called twice without an intermediate call to an unlock function.

Critical sections protect shared variables from concurrent access. Polyspace expects
critical sections to follow a certain format. The critical section must lie between a call to a
lock function and a call to an unlock function.

For the specific defects, see “Concurrency Defects”.

Data flow

These defects are errors relating to how information moves throughout your code. The
defects include:

• Dead or unreachable code
• Unused code
• Non-initialized information

For the specific defects, see “Data Flow Defects”.

Dynamic Memory

These defects are errors relating to memory usage when the memory is dynamically
allocated. The defects include:

• Freeing dynamically allocated memory
• Unprotected memory allocations

For specific defects, see “Dynamic Memory Defects”.

Good Practice

These defects allow you to observe good coding practices. The defects by themselves
might not cause a crash, but they sometimes highlight more serious logic errors in your
code. The defects also make your code vulnerable to attacks and hard to maintain.

The defects include:

• Hard-coded constants such as buffer size and loop boundary
• Unused function parameters

5 View Results in the Polyspace Environment

5-54

For specific defects, see “Good Practice Defects”.

Numerical

These defects are errors relating to variables in your code; their values, data types, and
usage. The defects include:

• Mathematical operations
• Conversion overflow
• Operational overflow

For specific defects, see “Numerical Defects”.

Object Oriented

These defects are related to the object-oriented aspect of C++ programming. The defects
highlight class design issues or issues in the inheritance hierarchy.

The defects include:

• Data member not initialized or incorrectly initialized in constructor
• Incorrect overriding of base class methods
• Breaking of data encapsulation

For specific defects, see “Object Oriented Defects”.

Programming

These defects are errors relating to programming syntax. These defects include:

• Assignment versus equality operators
• Mismatches between variable qualifiers or declarations
• Badly formatted strings

For specific defects, see “Programming Defects”.

Resource Management

These defects are related to file handling. The defects include:

 Bug Finder Defect Groups

5-55

• Unclosed file stream
• Operations on a file stream after it is closed

For specific defects, see “Resource Management Defects”.

Static Memory

These defects are errors relating to memory usage when the memory is statically
allocated. The defects include:

• Accessing arrays outside their bounds
• Null pointers
• Casting of pointers

For specific defects, see “Static Memory Defects”.

Security

These defects highlight places in your code which are vulnerable to hacking or other
security attacks. Many of these defects do not cause runtime errors, but instead point out
risky areas in your code. The defects include:

• Managing sensitive data
• Using dangerous or obsolete functions
• Generating random numbers
• Externally controlled paths and commands

For more details about specific defects, see “Security Defects”.

Tainted data

These defects highlight elements in your code which are from unsecured sources.
Malicious attackers can use input data or paths to attack your program and cause
failures. These defects highlight elements in your code that are vulnerable. Defects
include:

• Use of tainted variables or pointers
• Externally controlled paths

5 View Results in the Polyspace Environment

5-56

For more details about specific defects, see “Tainted Data Defects”.

 HIS Metrics

5-57

HIS Metrics

The following list shows the Hersteller Initiative Software (HIS) standard metrics that
Polyspace evaluates. These metrics and the recommended limits for their values are part
of a standard defined by a major group of Original equipment manufacturers or OEMs.
For more information on how to focus your review to this subset of code metrics, see
“Review Code Metrics” on page 5-30.

Project

Polyspace evaluates the following HIS metrics at the project level.

Metric Recommended Upper Limit

Number of Direct Recursions 0
Number of Recursions 0

File

Polyspace evaluates the HIS metric, comment density, at the file level. The recommended
lower limit is 20.

Function

Polyspace evaluates the following HIS metrics at the function level.

Metric Recommended Upper Limit

Cyclomatic Complexity 10
Language Scope 4
Number of Call Levels 80
Number of Calling Functions 5
Number of Called Functions 7
Number of Function Parameters 5
Number of Goto Statements 0
Number of Instructions 50

5 View Results in the Polyspace Environment

5-58

Metric Recommended Upper Limit

Number of Paths 80
Number of Return Statements 1

 Common Weakness Enumeration from Bug Finder Defects

5-59

Common Weakness Enumeration from Bug Finder Defects

In this section...

“Common Weakness Enumeration” on page 5-59
“Polyspace Bug Finder and CWE Compatibility” on page 5-59

Common Weakness Enumeration

Common Weakness Enumeration (CWE™) is a dictionary of common software
weaknesses that can occur in software architecture, design, code, or implementation.
These weaknesses can lead to security vulnerabilities.

The dictionary assigns a unique identifier to each software weakness. Therefore, this
dictionary serves as a common language for describing software security weaknesses, and
a standard for software security tools targeting these weaknesses.

For more information, see Common Weakness Enumeration.

Polyspace Bug Finder and CWE Compatibility

With Polyspace Bug Finder, you can check and document whether your software contains
weaknesses listed in the CWE dictionary. Polyspace Bug Finder supports some aspects of
the CWE Compatibility and Effectiveness Program:

CWE Compatibility Requirement Polyspace Bug Finder Support

CWE Searchable You can list instances of a software
weakness corresponding to a certain CWE
identifier.

For more information, see “Filter CWE
Identifiers” on page 5-61.

CWE Output • You can view CWE identifiers
corresponding to certain Polyspace Bug
Finder defects.

For more information, see “View CWE
Identifiers” on page 5-61.

http://cwe.mitre.org/

5 View Results in the Polyspace Environment

5-60

CWE Compatibility Requirement Polyspace Bug Finder Support

• You can include CWE identifiers
corresponding to Polyspace Bug Finder
defects in your report.

For more information, see “Generate
Report with CWE Identifiers” on page
5-61.

For more information on the CWE Compatibility and Effectiveness Program, see CWE
Compatibility.

Related Examples
• “Find CWE Identifiers from Defects” on page 5-61

More About
• “Mapping Between CWE Identifiers and Defects” on page 5-63

https://cwe.mitre.org/compatible/
https://cwe.mitre.org/compatible/

 Find CWE Identifiers from Defects

5-61

Find CWE Identifiers from Defects

This example shows how to check whether your software has weaknesses listed by
the Common Weakness Enumeration or CWE dictionary. The dictionary assigns a
unique identifier to each software weakness. When a Polyspace Bug Finder result can
be associated with CWE identifiers, the software displays those identifiers for the result.
Using the identifiers, you can evaluate your code against CWE standards.

In this section...

“View CWE Identifiers” on page 5-61
“Filter CWE Identifiers” on page 5-61
“Generate Report with CWE Identifiers” on page 5-61

View CWE Identifiers

To view the CWE identifiers for defects on the Results Summary pane:

1 Right-click any column header.
2 Select CWE ID.

Filter CWE Identifiers

To filter a particular CWE identifier:

1
On the CWE ID column, click the icon.

2 From the drop-down list, select Custom.
3 From the Condition drop-down list, select contains.
4 In the Value field, enter the CWE ID that you want to filter. Click OK.

Generate Report with CWE Identifiers

To generate a report containing CWE identifiers, do the following.

• To enable report generation before analysis:

1 On the Configuration pane, select Reporting.

5 View Results in the Polyspace Environment

5-62

2 Select Generate report.
3 From the Report template list, select BugFinder_CWE.

• To generate a report after analysis:

1 Open your results.
2 Select Reporting > Run Report.
3 From the Select Reports list, select BugFinder_CWE.

More About
• “Common Weakness Enumeration from Bug Finder Defects” on page 5-59
• “Mapping Between CWE Identifiers and Defects” on page 5-63

 Mapping Between CWE Identifiers and Defects

5-63

Mapping Between CWE Identifiers and Defects

The following table lists the CWE IDs (version 2.6) addressed by Polyspace Bug Finder
and the corresponding defects.

CWE ID Polyspace Bug Finder Defect

15: External Control of System or
Configuration Setting

Host change using externally controlled
elements

Use of externally controlled environment
variable

22: Improper Limitation of a Pathname to
a Restricted Directory

Vulnerable path manipulation

23: Relative Path Traversal Vulnerable path manipulation
36: Absolute Path Traversal Vulnerable path manipulation
77: Improper Neutralization of Special
Elements used in a Command

Execution of externally controlled command

78: Improper Neutralization of Special
Elements used in an OS Command

Command executed from externally
controlled path

Execution of externally controlled command
88: Argument Injection or Modification Execution of externally controlled command
114: Process Control Execution of a binary from a relative path

can be controlled by an external actor

Library loaded from externally controlled
path

Load of library from a relative path can be
controlled by an external actor

119: Improper Restriction of Operations
within the Bounds of a Memory Buffer

Array access out of bounds

Pointer access out of bounds
120: Buffer Copy without Checking Size of
Input ('Classic Buffer Overflow')

Invalid use of standard library memory
routine

http://cwe.mitre.org/data/definitions/15.html
http://cwe.mitre.org/data/definitions/15.html
http://cwe.mitre.org/data/definitions/22.html
http://cwe.mitre.org/data/definitions/22.html
http://cwe.mitre.org/data/definitions/23.html
http://cwe.mitre.org/data/definitions/36.html
http://cwe.mitre.org/data/definitions/77.html
http://cwe.mitre.org/data/definitions/77.html
http://cwe.mitre.org/data/definitions/78.html
http://cwe.mitre.org/data/definitions/78.html
http://cwe.mitre.org/data/definitions/88.html
http://cwe.mitre.org/data/definitions/114.html
http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/120.html

5 View Results in the Polyspace Environment

5-64

CWE ID Polyspace Bug Finder Defect

Invalid use of standard library string
routine

Tainted NULL or non-null-terminated
string

121: Stack-based Buffer Overflow Array access with tainted index

Destination buffer overflow in string
manipulation

122: Heap-based Buffer Overflow Pointer dereference with tainted offset
124: Buffer Underwrite ('Buffer
Underflow')

Array access with tainted index

Buffer overflow from incorrect string format
specifier

Destination buffer underflow in string
manipulation

Pointer dereference with tainted offset
125: Out-of-bounds Read Array access with tainted index

Buffer overflow from incorrect string format
specifier

Destination buffer overflow in string
manipulation

Use of tainted pointer
126: Buffer Over-read Buffer overflow from incorrect string format

specifier
127: Buffer Under-read Buffer overflow from incorrect string format

specifier
129: Improper Validation of Array Index Array access with tainted index

Pointer dereference with tainted offset
130: Improper Handling of Length
Parameter Inconsistency

Mismatch between data length and size

http://cwe.mitre.org/data/definitions/121.html
http://cwe.mitre.org/data/definitions/122.html
http://cwe.mitre.org/data/definitions/124.html
http://cwe.mitre.org/data/definitions/124.html
http://cwe.mitre.org/data/definitions/125.html
http://cwe.mitre.org/data/definitions/126.html
http://cwe.mitre.org/data/definitions/127.html
http://cwe.mitre.org/data/definitions/129.html
http://cwe.mitre.org/data/definitions/130.html
http://cwe.mitre.org/data/definitions/130.html

 Mapping Between CWE Identifiers and Defects

5-65

CWE ID Polyspace Bug Finder Defect

134: Uncontrolled Format String Tainted string format
170: Improper Null Termination Missing null in string array

Tainted NULL or non-null-terminated
string

188: Reliance on Data/Memory Layout Invalid assumptions about memory
organization

Pointer access out of bounds
190: Integer Overflow or Wraparound Integer conversion overflow

Integer overflow

Shift operation overflow

Tainted division operand

Unsigned integer conversion overflow

Unsigned integer overflow
191: Integer Underflow (Wrap or
Wraparound)

Integer conversion overflow

Integer overflow

Unsigned integer conversion overflow

Unsigned integer overflow
194: Unexpected Sign Extension Sign change integer conversion overflow

Tainted sign change conversion
195: Signed to Unsigned Conversion Error Sign change integer conversion overflow

Tainted sign change conversion
196: Unsigned to Signed Conversion Error Sign change integer conversion overflow

http://cwe.mitre.org/data/definitions/134.html
http://cwe.mitre.org/data/definitions/170.html
http://cwe.mitre.org/data/definitions/188.html
http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/191.html
http://cwe.mitre.org/data/definitions/191.html
http://cwe.mitre.org/data/definitions/194.html
http://cwe.mitre.org/data/definitions/195.html
http://cwe.mitre.org/data/definitions/196.html

5 View Results in the Polyspace Environment

5-66

CWE ID Polyspace Bug Finder Defect

197: Numeric Truncation Error Integer conversion overflow

Float conversion overflow

Unsigned integer conversion overflow
226: Sensitive Information Uncleared
Before Release

Uncleared sensitive data in stack

227: Improper Fulfillment of API Contract Invalid use of standard library floating point
routine

Invalid use of standard library memory
routine

Invalid use of standard library routine

Invalid use of standard library string
routine

Writing to const qualified object
240: Improper Handling of Inconsistent
Structural Elements

Mismatch between data length and size

242: Use of Inherently Dangerous
Function

Use of dangerous standard function

243: Creation of chroot Jail Without
Changing Working Directory

File manipulation after chroot() without
chdir(“/”)

244: Improper Clearing of Heap Memory
Before Release

Sensitive heap memory not cleared before
release

251: Often Misused: String Management Destination buffer overflow in string
manipulation

327: Use of a Broken or Risky
Cryptographic Algorithm

Unsafe standard encryption function

http://cwe.mitre.org/data/definitions/197.html
http://cwe.mitre.org/data/definitions/226.html
http://cwe.mitre.org/data/definitions/226.html
http://cwe.mitre.org/data/definitions/227.html
http://cwe.mitre.org/data/definitions/240.html
http://cwe.mitre.org/data/definitions/240.html
http://cwe.mitre.org/data/definitions/242.html
http://cwe.mitre.org/data/definitions/242.html
http://cwe.mitre.org/data/definitions/243.html
http://cwe.mitre.org/data/definitions/243.html
http://cwe.mitre.org/data/definitions/244.html
http://cwe.mitre.org/data/definitions/244.html
http://cwe.mitre.org/data/definitions/251.html
http://cwe.mitre.org/data/definitions/327.html
http://cwe.mitre.org/data/definitions/327.html

 Mapping Between CWE Identifiers and Defects

5-67

CWE ID Polyspace Bug Finder Defect

330: Use of Insufficiently Random Values Deterministic random output from constant
seed

Predictable random output from predictable
seed

Vulnerable pseudo-random number
generator

336: Same Seed in PRNG Deterministic random output from constant
seed

337: Predictable Seed in PRNG Predictable random output from predictable
seed

338: Use of Cryptographically Weak
Pseudo-Random Number Generator
(PRNG)

Vulnerable pseudo-random number
generator

366: Race Condition within a Thread Data race including atomic operations

Data race
367: Time-of-check Time-of-use (TOCTOU)
Race Condition

File access between time of check and use
(TOCTOU)

369: Divide By Zero Float division by zero

Integer division by zero

Invalid use of standard library integer
routine

Invalid use of standard library floating point
routine

Tainted division operand

Tainted modulo operand
377: Insecure Temporary File Use of non-secure temporary file
398: Indicator of Poor Code Quality Write without a further read
400: Uncontrolled Resource Consumption Loop bounded with tainted value

http://cwe.mitre.org/data/definitions/330.html
http://cwe.mitre.org/data/definitions/336.html
http://cwe.mitre.org/data/definitions/337.html
http://cwe.mitre.org/data/definitions/338.html
http://cwe.mitre.org/data/definitions/338.html
http://cwe.mitre.org/data/definitions/338.html
http://cwe.mitre.org/data/definitions/366.html
http://cwe.mitre.org/data/definitions/367.html
http://cwe.mitre.org/data/definitions/367.html
http://cwe.mitre.org/data/definitions/369.html
http://cwe.mitre.org/data/definitions/377.html
http://cwe.mitre.org/data/definitions/398.html
http://cwe.mitre.org/data/definitions/400.html

5 View Results in the Polyspace Environment

5-68

CWE ID Polyspace Bug Finder Defect

401: Improper Release of Memory Before
Removing Last Reference

Memory leak

404: Improper Resource Shutdown or
Release

Invalid deletion of pointer

Invalid free of pointer

Memory leak
415: Double Free Deallocation of previously deallocated

pointer
416: Use After Free Use of previously freed pointer
427: Uncontrolled Search Path Element Execution of a binary from a relative path

can be controlled by an external actor

Library loaded from externally controlled
path

Load of library from a relative path can be
controlled by an external actor

Use of externally controlled environment
variable

456: Missing Initialization of a Variable Member not initialized in constructor

Non-initialized pointer

Non-initialized variable
457: Use of Uninitialized Variable Member not initialized in constructor

Non-initialized pointer

Non-initialized variable
466: Return of Pointer Value Outside of
Expected Range

Array access out of bounds

Pointer access out of bounds
467: Use of sizeof() on a Pointer Type Possible misuse of sizeof

Wrong type used in sizeof

http://cwe.mitre.org/data/definitions/401.html
http://cwe.mitre.org/data/definitions/401.html
http://cwe.mitre.org/data/definitions/404.html
http://cwe.mitre.org/data/definitions/404.html
http://cwe.mitre.org/data/definitions/415.html
http://cwe.mitre.org/data/definitions/416.html
http://cwe.mitre.org/data/definitions/427.html
http://cwe.mitre.org/data/definitions/456.html
http://cwe.mitre.org/data/definitions/457.html
http://cwe.mitre.org/data/definitions/466.html
http://cwe.mitre.org/data/definitions/466.html
http://cwe.mitre.org/data/definitions/467.html

 Mapping Between CWE Identifiers and Defects

5-69

CWE ID Polyspace Bug Finder Defect

468: Incorrect Pointer Scaling Incorrect pointer scaling

Unreliable cast of pointer
471: Modification of Assumed-Immutable
Data

Writing to const qualified object

475: Undefined Behavior for Input to API Copy of overlapping memory
476: NULL Pointer Dereference Null pointer

Tainted NULL or non-null-terminated
string

477: Use of Obsolete Functions Use of obsolete standard function
478: Missing Default Case in Switch
Statement

Missing case for switch condition

481: Assigning instead of Comparing Invalid use of = operator
482: Comparing instead of Assigning Invalid use of == operator
532: Information Exposure Through Log
Files

Sensitive data printed out

534: Information Exposure Through
Debug Log Files

Sensitive data printed out

535: Information Exposure Through Shell
Error Message

Sensitive data printed out

547: Use of Hard-coded, Security-relevant
Constants

Hard coded buffer size

Hard coded loop boundary
558: Use of getlogin() in Multithreaded
Application

Unsafe standard function

560: Use of umask() with chmod-style
Argument

Umask used with chmod-style arguments

561: Dead Code Dead code

Static uncalled function

Unreachable code

http://cwe.mitre.org/data/definitions/468.html
http://cwe.mitre.org/data/definitions/471.html
http://cwe.mitre.org/data/definitions/471.html
http://cwe.mitre.org/data/definitions/475.html
http://cwe.mitre.org/data/definitions/476.html
http://cwe.mitre.org/data/definitions/477.html
http://cwe.mitre.org/data/definitions/478.html
http://cwe.mitre.org/data/definitions/478.html
http://cwe.mitre.org/data/definitions/481.html
http://cwe.mitre.org/data/definitions/482.html
http://cwe.mitre.org/data/definitions/532.html
http://cwe.mitre.org/data/definitions/532.html
http://cwe.mitre.org/data/definitions/534.html
http://cwe.mitre.org/data/definitions/534.html
http://cwe.mitre.org/data/definitions/535.html
http://cwe.mitre.org/data/definitions/535.html
http://cwe.mitre.org/data/definitions/547.html
http://cwe.mitre.org/data/definitions/547.html
http://cwe.mitre.org/data/definitions/558.html
http://cwe.mitre.org/data/definitions/558.html
http://cwe.mitre.org/data/definitions/560.html
http://cwe.mitre.org/data/definitions/560.html
http://cwe.mitre.org/data/definitions/561.html

5 View Results in the Polyspace Environment

5-70

CWE ID Polyspace Bug Finder Defect

562: Return of Stack Variable Address Pointer or reference to stack variable
leaving scope

573: Improper Following of Specification
by Caller

Modification of internal buffer returned
from nonreentrant standard function

587: Assignment of a Fixed Address to a
Pointer

Function pointer assigned with absolute
address

590: Free of Memory not on the Heap Invalid free of pointer
606: Unchecked Input for Loop Condition Loop bounded with tainted value
628: Function Call with Incorrectly
Specified Arguments

Bad file access mode or status

Copy of overlapping memory

Invalid va_list argument

Modification of internal buffer returned
from nonreentrant standard function

Standard function call with incorrect
arguments

663: Use of a Non-reentrant Function in a
Concurrent Context

Unsafe standard encryption function

Unsafe standard function
665: Improper Initialization Call to memset with unintended value

Improper array initialization

Overlapping assignment

Use of memset with size argument zero
666: Operation on Resource in Wrong
Phase of Lifetime

Incorrect order of network connection
operations

667: Improper Locking Missing unlock
672: Operation on a Resource after
Expiration or Release

Use of previously closed resource

Closing a previously closed resource

http://cwe.mitre.org/data/definitions/562.html
http://cwe.mitre.org/data/definitions/573.html
http://cwe.mitre.org/data/definitions/573.html
http://cwe.mitre.org/data/definitions/587.html
http://cwe.mitre.org/data/definitions/587.html
http://cwe.mitre.org/data/definitions/590.html
http://cwe.mitre.org/data/definitions/606.html
http://cwe.mitre.org/data/definitions/628.html
http://cwe.mitre.org/data/definitions/628.html
http://cwe.mitre.org/data/definitions/663.html
http://cwe.mitre.org/data/definitions/663.html
http://cwe.mitre.org/data/definitions/665.html
http://cwe.mitre.org/data/definitions/666.html
http://cwe.mitre.org/data/definitions/666.html
https://cwe.mitre.org/data/definitions/667.html
http://cwe.mitre.org/data/definitions/672.html
http://cwe.mitre.org/data/definitions/672.html

 Mapping Between CWE Identifiers and Defects

5-71

CWE ID Polyspace Bug Finder Defect

676: Use of Potentially Dangerous
Function

Use of dangerous standard function

681: Incorrect Conversion between
Numeric Types

Float conversion overflow

682: Incorrect Calculation Float overflow

Invalid use of standard library floating point
routine

Tainted modulo operand
685: Function Call With Incorrect Number
of Arguments

Declaration mismatch

Format string specifiers and arguments
mismatch

Standard function call with incorrect
arguments

686: Function Call with Incorrect
Argument Type

Bad file access mode or status

Declaration mismatch

Format string specifiers and arguments
mismatch

Standard function call with incorrect
arguments

Writing to const qualified object
687: Function Call with Incorrectly
Specified Argument Value

Copy of overlapping memory

Standard function call with incorrect
arguments

Tainted size of variable length array

Variable length array with nonpositive size
691: Insufficient Control Flow
Management

Use of setjmp/longjmp

http://cwe.mitre.org/data/definitions/676.html
http://cwe.mitre.org/data/definitions/676.html
http://cwe.mitre.org/data/definitions/681.html
http://cwe.mitre.org/data/definitions/681.html
http://cwe.mitre.org/data/definitions/682.html
http://cwe.mitre.org/data/definitions/685.html
http://cwe.mitre.org/data/definitions/685.html
http://cwe.mitre.org/data/definitions/686.html
http://cwe.mitre.org/data/definitions/686.html
http://cwe.mitre.org/data/definitions/687.html
http://cwe.mitre.org/data/definitions/687.html
http://cwe.mitre.org/data/definitions/691.html
http://cwe.mitre.org/data/definitions/691.html

5 View Results in the Polyspace Environment

5-72

CWE ID Polyspace Bug Finder Defect

704: Incorrect Type Conversion or Cast Qualifier removed in conversion

Unreliable cast of pointer

Wrong allocated object size for cast
732: Incorrect Permission Assignment for
Critical Resource

Vulnerable permission assignments

755: Improper Handling of Exceptional
Conditions

Exception handler hidden by previous
handler

762: Mismatched Memory Management
Routines

Invalid free of pointer

764: Multiple Locks of a Critical Resource Double lock
765: Multiple Unlocks of a Critical
Resource

Double unlock

767: Access to Critical Private Variable via
Public Method

Return of non const handle to encapsulated
data member

770: Allocation of Resources Without
Limits or Throttling

Tainted size of variable length array

772: Missing Release of Resource after
Effective Lifetime

Resource leak

783: Operator Precedence Logic Error Possibly unintended evaluation of
expression because of operator precedence
rules

785: Use of Path Manipulation Function
without Maximum-sized Buffer

Use of path manipulation function without
maximum sized buffer checking

786: Access of Memory Location Before
Start of Buffer

Destination buffer underflow in string
manipulation

787: Out-of-bounds Write Destination buffer overflow in string
manipulation

Destination buffer underflow in string
manipulation

Use of tainted pointer

http://cwe.mitre.org/data/definitions/704.html
http://cwe.mitre.org/data/definitions/732.html
http://cwe.mitre.org/data/definitions/732.html
http://cwe.mitre.org/data/definitions/755.html
http://cwe.mitre.org/data/definitions/755.html
http://cwe.mitre.org/data/definitions/762.html
http://cwe.mitre.org/data/definitions/762.html
https://cwe.mitre.org/data/definitions/764.html
https://cwe.mitre.org/data/definitions/765.html
https://cwe.mitre.org/data/definitions/765.html
http://cwe.mitre.org/data/definitions/767.html
http://cwe.mitre.org/data/definitions/767.html
http://cwe.mitre.org/data/definitions/770.html
http://cwe.mitre.org/data/definitions/770.html
http://cwe.mitre.org/data/definitions/772.html
http://cwe.mitre.org/data/definitions/772.html
http://cwe.mitre.org/data/definitions/783.html
http://cwe.mitre.org/data/definitions/785.html
http://cwe.mitre.org/data/definitions/785.html
http://cwe.mitre.org/data/definitions/786.html
http://cwe.mitre.org/data/definitions/786.html
http://cwe.mitre.org/data/definitions/787.html

 Mapping Between CWE Identifiers and Defects

5-73

CWE ID Polyspace Bug Finder Defect

789: Uncontrolled Memory Allocation Memory allocation with tainted size

Tainted size of variable length array

Unprotected dynamic memory allocation
822: Untrusted Pointer Dereference Tainted NULL or non-null-terminated

string

Use of tainted pointer
823: Use of Out-of-range Pointer Offset Pointer access out of bounds

Pointer dereference with tainted offset
824: Access of Uninitialized Pointer Non-initialized pointer
832: Unlock of a Resource that is not
Locked

Missing lock

833: Deadlock Deadlock
835: Loop with Unreachable Exit
Condition

Loop bounded with tainted value

843: Access of Resource Using
Incompatible Type ('Type Confusion')

Unreliable cast of pointer

873: CERT C++ Secure Coding Section 05
- Floating Point Arithmetic (FLP)

Invalid use of floating point operation

Invalid use of standard library floating point
routine

Float overflow
908: Use of Uninitialized Resource Member not initialized in constructor

Non-initialized pointer

Non-initialized variable

http://cwe.mitre.org/data/definitions/789.html
http://cwe.mitre.org/data/definitions/822.html
http://cwe.mitre.org/data/definitions/823.html
http://cwe.mitre.org/data/definitions/824.html
https://cwe.mitre.org/data/definitions/832.html
https://cwe.mitre.org/data/definitions/832.html
https://cwe.mitre.org/data/definitions/833.html
http://cwe.mitre.org/data/definitions/835.html
http://cwe.mitre.org/data/definitions/835.html
http://cwe.mitre.org/data/definitions/843.html
http://cwe.mitre.org/data/definitions/843.html
http://cwe.mitre.org/data/definitions/873.html
http://cwe.mitre.org/data/definitions/873.html
http://cwe.mitre.org/data/definitions/908.html

6

Command-Line Analysis

• “Create Project Automatically at Command Line” on page 6-2
• “Run Local Analysis from Command Line” on page 6-4
• “Run Remote Analysis at Command Line” on page 6-6
• “Create Project Automatically from MATLAB Command Line” on page 6-10

6 Command-Line Analysis

6-2

Create Project Automatically at Command Line

If you use build automation scripts to build your source code, you can automatically setup
a Polyspace project from your scripts. The automatic project setup runs your automation
scripts to determine:

• Source files.
• Includes.
• Target & compiler options. For more information on these options, see:

• C Code: “Target & Compiler”
• C++ Code: “Target & Compiler”

Use the polyspace-configure command to trace your build automation scripts. You
can use the trace information to:

• Create a Polyspace project. You can then open the project in the user interface.

Example: If you use the command make targetName buildOptions to
build your source code, use the following command to create a Polyspace project
myProject.psprj from your makefile:

polyspace-configure -prog myProject make targetName buildOptions

For the list of options allowed with the GNU make, see make options.
• Create an options file. You can then use the options file to run verification on your

source code from the command-line.

Example: If you use the command make targetName buildOptions to build your
source code, use the following commands to create an options file myOptions from
your makefile:

polyspace-configure -no-project -output-options-file myOptions ...

 make targetName buildOptions

Use the options file to run verification:

polyspace-bug-finder-nodesktop -options-file myOptions

You can also use advanced options to modify the default behavior of polyspace-
configure. For more information, see the -options value argument for
polyspaceConfigure.

https://www.gnu.org/software/make/manual/html_node/Options-Summary.html

 Create Project Automatically at Command Line

6-3

More About
• “Requirements for Project Creation from Build Systems” on page 1-10
• “Compiler Not Supported for Project Creation from Build Systems” on page 1-13
• “Slow Build Process When Polyspace Traces the Build” on page 1-20
• “Checking if Polyspace Supports Windows Build Command” on page 1-21

6 Command-Line Analysis

6-4

Run Local Analysis from Command Line

To run an analysis from a DOS or UNIX command window, use the command
polyspace-bug-finder-nodesktop followed by other options you wish to use.

Note: To run Bug Finder from the MATLAB Command Window, use the command
polyspaceBugFinder [options]

In this section...

“Specify Sources and Analysis Options Directly” on page 6-4
“Specify Sources and Analysis Options in Text File” on page 6-5
“Create Options File from Build System” on page 6-5

Specify Sources and Analysis Options Directly

At the Windows, Linux or Mac OS X command-line, append sources and analysis options
to the polyspace-bug-finder-nodesktop command.

For instance:

• To specify the target processor, use the -target option. For instance, to specify the
m68k processor for your source file file.c, use the command:

polyspace-bug-finder-nodesktop -sources "file.c" -lang c -target m68k

• To check for violation of MISRA C rules, use the -misra2 option. For instance,
to check for only the required MISRA C rules on your source file file.c, use the
command:

polyspace-bug-finder-nodesktop -sources "file.c" -misra2 required-rules

For the full list of analysis options, see “Analysis Options for C” or “Analysis Options for
C++”.

You can also enter the following at the command line:

polyspace-bug-finder-nodesktop -help

 Run Local Analysis from Command Line

6-5

Specify Sources and Analysis Options in Text File

1 Create an options file called listofoptions.txt with your options. For example:

#These are the options for MyBugFinderProject

-lang c

-prog MyBugFinderProject

-author jsmith

-sources "mymain.c,funAlgebra.c,funGeometry.c"

-OS-target no-predefined-OS

-target x86_64

-dialect none

-dos

-misra2 required-rules

-includes-to-ignore all-headers

-checkers default

-disable-checkers concurrency

-results-dir C:\Polyspace\MyBugFinderProject

2 Run Polyspace using options in the file listofoptions.txt.

polyspace-bug-finder-nodesktop -options-file listofoptions.txt

Create Options File from Build System

1 Create a list of Polyspace options using the configuration tool.

polyspace-configure -c -no-project -output-options-file \

 myOptions make -B myCode

2 Run Polyspace Bug Finder using the options read from your build.

polyspace-bug-finder-nodesktop -options-file myOptions \

 -results-dir myResults

3 Open the results in the Bug Finder interface.

polyspace-bug-finder myResults

6 Command-Line Analysis

6-6

Run Remote Analysis at Command Line

Before you run a remote analysis, you must set up a server for this purpose. For more
information, see “Set Up Server for Metrics and Remote Analysis”.

In this section...

“Run Remote Analysis” on page 6-6
“Manage Remote Analysis” on page 6-7
“Download Results” on page 6-9

Run Remote Analysis

Use the following command to run a remote verification:

MATLAB_Install\polyspace\bin\polyspace-bug-finder-nodesktop

-batch -scheduler NodeHost | MJSName@NodeHost [options]

where:

• MATLAB_Install is your MATLAB installation folder.
• NodeHost is the name of the computer that hosts the head node of your MATLAB

Distributed Computing Server™ cluster.
• MJSName is the name of the MATLAB Job Scheduler (MJS) on the head node host.
• options are the analysis options. These options are the same as that of a local

analysis. For more information, see “Run Local Analysis from Command Line” on
page 6-4.

After compilation, the software submits the verification job to the cluster and provides
you a job ID. Use the polyspace-jobs-manager command with the job ID to
monitor your verification and download results after verification is complete. For more
information, see:

• “Manage Remote Analysis” on page 6-7
• “Download Results” on page 6-9

Tip In Windows, to avoid typing the commands each time, you can save the commands in
a batch file.

 Run Remote Analysis at Command Line

6-7

1 Save your analysis options in a file listofoptions.txt. See “Specify Sources and
Analysis Options in Text File” on page 6-5.
To specify your sources, in the options file, instead of -sources, use -sources-list-
file. This option is available only for remote analysis and allows you to specify your
sources in a separate text file.

2 Create a file launcher.bat in a text editor like Notepad.
3 Enter the following commands in the file.

echo off

set POLYSPACE_PATH=C:\Program Files\MATLAB\R2015a\polyspace\bin

set RESULTS_PATH=C:\Results

set OPTIONS_FILE=C:\Options\listofoptions.txt

"%POLYSPACE_PATH%\polyspace-bug-finder-nodesktop.exe" -batch -scheduler localhost

 -results-dir "%RESULTS_PATH%" -options-file "%OPTIONS_FILE%"

pause

4 Replace the definitions of the following variables in the file:
• POLYSPACE_PATH: Enter the actual location of the .exe file.
• RESULTS_PATH: Enter the path to a folder. The files generated during

compilation are saved in the folder.
• OPTIONS_FILE: Enter the path to the file listofoptions.txt.
Replace localhost with the name of the computer that hosts the head node of your
MATLAB Distributed Computing Server cluster.

5 Double-click launcher.bat to run the verification.

If you run a Polyspace verification, a .bat file is automatically generated for you. You
can relaunch verification using this file.

Manage Remote Analysis

To manage remote analyses, use this command:

MATLAB_Install\polyspace\bin\polyspace-jobs-manager action [options]

 [-scheduler schedulerOption]

where:

• MATLAB_Install is your MATLAB installation folder

6 Command-Line Analysis

6-8

• schedulerOption is one of the following:

• Name of the computer that hosts the head node of your MATLAB Distributed
Computing Server cluster (NodeHost).

• Name of the MJS on the head node host (MJSName@NodeHost).
• Name of a MATLAB cluster profile (ClusterProfile).

For more information about clusters, see “Clusters and Cluster Profiles”

If you do not specify a job scheduler, polyspace-job-manager uses the scheduler
specified in the Polyspace Preferences > Server Configuration > Job scheduler
host name.

• action [options] refer to the possible action commands to manage jobs on the
scheduler:

Action Options Task

listjobs None Generate a list of Polyspace jobs on the
scheduler. For each job, the software produces
the following information:

• ID — Verification or analysis identifier.
• AUTHOR — Name of user that submitted

job.
• APPLICATION — Name of Polyspace

product, for example, Polyspace Code
Prover or Polyspace Bug Finder.

• LOCAL_RESULTS_DIR — Results folder
on local computer, specified through
the Tools > Preferences > Server
Configuration tab.

• WORKER — Local computer from which job
was submitted.

• STATUS — Status of job, for example,
running and completed.

• DATE — Date on which job was submitted.
• LANG — Language of submitted source

code.

 Run Remote Analysis at Command Line

6-9

Action Options Task

download -job ID -results-
folder FolderPath

Download results of analysis with specified ID
to folder specified by FolderPath.

getlog -job ID Open log for job with specified ID.
remove -job ID Remove job with specified ID.

Download Results

To download verification results from the command line, use the polyspace-jobs-
manager command:
MATLAB_Install\polyspace\bin\polyspace-jobs-manager -download

-job Verification_ID -results-folder FolderPath

After downloading results, use the Polyspace user interface to view the results. See
“Open Results”.

6 Command-Line Analysis

6-10

Create Project Automatically from MATLAB Command Line

If you use build automation scripts to build your source code, you can automatically setup
a Polyspace project from your scripts. The automatic project setup runs your automation
scripts to determine:

• Source files.
• Includes.
• Target & compiler options. For more information on these options, see:

• C Code: “Target & Compiler”
• C++ Code: “Target & Compiler”

Use the polyspaceConfigure command to trace your build automation scripts. You can
use the trace information to:

• Create a Polyspace project. You can then open the project in the user interface.

Example: If you use the command make targetName buildOptions to
build your source code, use the following command to create a Polyspace project
myProject.psprj from your makefile:

polyspaceConfigure -prog myProject ...

 make targetName buildOptions

• Create an options file. You can then use the options file to run verification on your
source code from the command-line.

Example: If you use the command make targetName buildOptions to build your
source code, use the following commands to create an options file myOptions from
your makefile:

polyspaceConfigure -no-project -output-options-file myOptions ...

 make targetName buildOptions

Use the options file to run verification:

polyspaceBugFinder -options-file myOptions

You can also use advanced options to modify the default behavior of
polyspaceConfigure. For more information, see polyspaceConfigure.

 Create Project Automatically from MATLAB Command Line

6-11

More About
• “Requirements for Project Creation from Build Systems” on page 1-10
• “Compiler Not Supported for Project Creation from Build Systems” on page 1-13
• “Slow Build Process When Polyspace Traces the Build” on page 1-20

7

Polyspace Bug Finder Analysis in
Simulink

• “Embedded Coder Considerations” on page 7-2
• “TargetLink Considerations” on page 7-5
• “Generate and Analyze Code” on page 7-7
• “Main Generation for Model Analysis” on page 7-14
• “Review Generated Code Results” on page 7-16
• “Troubleshoot Back to Model” on page 7-18

7 Polyspace Bug Finder Analysis in Simulink

7-2

Embedded Coder Considerations

In this section...

“Default Options” on page 7-2
“Recommended Polyspace Bug Finder Options for Analyzing Generated Code” on page
7-3
“Hardware Mapping Between Simulink and Polyspace” on page 7-4

Default Options

For Embedded Coder® code, the software sets certain analysis options by default.

Default options for C:

-sources path_to_source_code

-results-dir results

-D PST_ERRNO

-D main=main_rtwec __restrict__=

-I matlabroot\polyspace\include

-I matlabroot\extern\include

-I matlabroot\rtw\c\libsrc

-I matlabroot\simulink\include

-I matlabroot\sys\lcc\include

-OS-target no-predfined-OS

-ignore-constant-overflows true

-scalar-overflows-behavior wrap-around

-allow-negative-operand-in-shift true

-boolean-types boolean_T

-functions-to-stub=[rtIsNaN,rtIsInf,rtIsNaNF,rtIsInfF]

Default options for C++:

-sources path_to_source_code

-results-dir results

-D PST_ERRNO

-D main=main_rtwec __restrict__=

-I matlabroot\polyspace\include

-I matlabroot\extern\include

-I matlabroot\rtw\c\libsrc

-I matlabroot\simulink\include

-I matlabroot\sys\lcc\include

 Embedded Coder Considerations

7-3

-OS-target no-predfined-OS

-dialect iso

-ignore-constant-overflows true

-scalar-overflows-behavior wrap-around

-allow-negative-operand-in-shift true

-functions-to-stub=[rtIsNaN,rtIsInf,rtIsNaNF,rtIsInfF]

Note: matlabroot is the MATLAB installation folder.

Recommended Polyspace Bug Finder Options for Analyzing Generated
Code

For Embedded Coder code, you can specify other analysis options for your Polyspace
Project through the Polyspace Configuration pane. To open this pane:

1 In the Simulink® model window, select Code > Polyspace > Options. The
Polyspace pane opens.

2 Click Configure. The Polyspace Configuration pane opens.

The following table describes options that you should specify in your Polyspace project
before analyzing code generated by Embedded Coder software.

Option Recommended
Value

Comments

Macros > Preprocessor
definitions

-D

See comments Defines macro compiler flags used during
compilation. Some defines are applied by
default, depending on your -OS-target.

Use one -D for each line of the Embedded
Coder generated defines.txt file.

Polyspace does not do this by default.
Target & Compiler > Target
operating system

-OS-target

Visual Specifies the operating system target for
Polyspace stubs.

This information allows the analysis to use
system definitions during preprocessing to
analyze the included files.

7 Polyspace Bug Finder Analysis in Simulink

7-4

Option Recommended
Value

Comments

Environment Settings >
Code from DOS or Windows
file system

-dos

On You must select this option if the contents of
the include or source directory comes from
a DOS or Windows file system. The option
allows the analysis to deal with upper/lower
case sensitivity and control characters issues.

Concerned files are:

• Header files – All include folders specified
(-I option)

• Source files – All source files selected for
the analysis (-sources option)

Hardware Mapping Between Simulink and Polyspace

The software automatically imports target word lengths and byte ordering (endianess)
from Simulink model hardware configuration settings. The software maps Device
vendor and Device type settings on the Simulink Configuration Parameters >
Hardware Implementation pane to Target processor type settings on the Polyspace
Configuration pane.

The software creates a generic target for the analysis.

 TargetLink Considerations

7-5

TargetLink Considerations

In this section...

“TargetLink Support” on page 7-5
“Default Options” on page 7-5
“Lookup Tables” on page 7-6
“Code Generation Options” on page 7-6

TargetLink Support

For Windows, Polyspace Bug Finder is tested with releases 3.5 and 4.0 of the dSPACE®

Data Dictionary and TargetLink® Code Generator.

As Polyspace Bug Finder extracts information from the dSPACE Data Dictionary, you
must regenerate the code before performing an analysis.

Default Options

The following default options are set by Polyspace:

-sources path_to_source_code

-results-dir results

-I path to source code

-D PST_ERRNO

-I dspaceroot\matlab\TL\SimFiles\Generic

-I dspaceroot\matlab\TL\srcfiles\Generic

-I dspaceroot\matlab\TL\srcfiles\i86\LCC

-I matlabroot\polyspace\include

-I matlabroot\extern\include

-I matlabroot\rtw\c\libsrc

-I matlabroot\simulink\include

-I matlabroot\sys\lcc\include

-functions-to-stub=[rtIsNaN,rtIsInf,rtIsNaNF,rtIsInfF]

-OS-target no-predfined-OS

-ignore-constant-overflows

-scalar-overflows-behavior wrap-around

-boolean-types Bool

7 Polyspace Bug Finder Analysis in Simulink

7-6

Note: dspaceroot and matlabroot are the dSPACE and MATLAB tool installation
directories respectively.

Lookup Tables

The tool by default provides stubs for the lookup table functions. This behavior can be
disabled from the Polyspace menu. The dSPACE data dictionary is used to define the
range of their return values. Note that a lookup table that uses extrapolation will return
full range for the type of variable that it returns.

Code Generation Options

From the TargetLink Main Dialog, it is recommended to set the option Clean code and
deselect the option Enable sections/pragmas/inline/ISR/user attributes.

When installing Polyspace, the tlcgOptions variable has been updated with
'PolyspaceSupport', 'on' (see variable in 'C:\dSPACE\Matlab\Tl\config
\codegen\tl_pre_codegen_hook.m' file).

Related Examples
• “Run Analysis for TargetLink” on page 10-6

External Websites
• dSPACE – TargetLink

http://www.dspace.com/en/inc/home/products/sw/pcgs/targetli.cfm

 Generate and Analyze Code

7-7

Generate and Analyze Code

This example shows how to use Polyspace Bug Finder to generate code from submodels
and S-Functions, run a Polyspace analysis from Simulink, and find code defects and
MISRA-C:2012 rule violations.

Generate Code and Run Analysis

Before running Polyspace on models, define the scope of your analysis and generate code
in Embedded Coder.

1. Open the example model.

psdemo_model_link_sl

7 Polyspace Bug Finder Analysis in Simulink

7-8

2. Right-click the controller subsystem.

3. From the context menu, select C/C++ Code > Build This Subsystem.

4. In the dialog box, select Build.

5. After the build is completed, right-click the controller subsystem.

6. From the context menu, select Polyspace > Options

7. In the Configuration Parameters window, select Product Mode > Bug Finder.

 Generate and Analyze Code

7-9

8. Apply your changes and close the Configuration Parameters window.

9. Right-click the controller subsystem.

10. Select Polyspace > Verify code generated for > Selected subsystem.

You can monitor progress from the Command Window. The results are displayed in the
Polyspace environment.

Review Results

In the Polyspace Environment, explore your results and link back to the model.

7 Polyspace Bug Finder Analysis in Simulink

7-10

1. Select the first result Integer division by zero.

This result shows a possible division by zero. The Source pane shows the
division operation between variables controller_B.threshold and
controller_B.Cumulatedangle.

 Generate and Analyze Code

7-11

2. To see this division operation in your model, select the link <S4>/limit_ratio. In
your model, the related block is highlighted in blue.

Fix Errors by Modifying the Model

The division by zero error stems from the Cumulated angle block, whose signal can be
zero. To fix the error in the code, modify this block in your model.

1. Before dividing with the Cumulated angle, add a switch block that checks for values
equal to zero.

7 Polyspace Bug Finder Analysis in Simulink

7-12

2. Rebuild the controller subsystem.

3. Rerun the Bug Finder analysis.

The results show that your fix in the model eliminated the division by zero defect.

 Generate and Analyze Code

7-13

Related Examples
• “Polyspace Configuration for Generated Code” on page 9-2
• “Run Analysis for Embedded Coder” on page 10-5
• “Run Analysis for TargetLink” on page 10-6

More About
• “Recommended Model Settings for Code Analysis” on page 8-3
• “Troubleshoot Back to Model” on page 7-18

7 Polyspace Bug Finder Analysis in Simulink

7-14

Main Generation for Model Analysis

When you run an analysis, the software automatically reads the following information
from the model:

• initialize() functions
• terminate() functions
• step() functions
• List of parameter variables
• List of input variables

The software then uses this information to generate a main function that:

1 Initializes parameters using the Polyspace option -variables-written-before-
loop.

2 Calls initialization functions using the option -functions-called-before-loop.
3 Initializes inputs using the option -variables-written-in-loop.
4 Calls the step function using the option -functions-called-in-loop.
5 Calls the terminate function using the option -functions-called-after-loop.

If the codeInfo for the model does not contain the names of the inputs, the software
considers all variables as entries, except for parameters and outputs.

For C++ code that is generated with Embedded Coder, the initialize(), step(), and
terminate() functions are either class methods or have global scope. These different
scopes contain the associated variables.

• For class methods in the generated code, the variables that are written before and in
the loop refer to the class members.

• For functions with global scope, the associated variables are also in the global scope.

main for Generated Code

The following example shows the main generator options that the software uses to
generate the main function for code generated from a Simulink model.
init parameters \\ -variables-written-before-loop

init_fct() \\ -functions-called-before-loop

 while(1){ \\ start main loop

 init inputs \\ -variables-written-in-loop

 Main Generation for Model Analysis

7-15

 step_fct() \\ -functions-called-in-loop

}

terminate_fct() \\ -functions-called-after-loop

7 Polyspace Bug Finder Analysis in Simulink

7-16

Review Generated Code Results

After you run a Polyspace analysis on generated code, you review the results from the
Polyspace environment. From the results you can link back to the related blocks in your
model.

1 Open the results using one of the following methods.

• If you analyzed the whole model, from the Simulink toolbar, select Code >
Polyspace > Open Results.

If you set Model reference verification depth to All and selected Model by
model verification. The Select the Result Folder to Open in Polyspace
dialog box opens showing a hierarchy of referenced models from which the
software generates code. To view the analysis results for a specific model, select
the model from the hierarchy. Then click OK.

• If you want to open results for a Model block or subsystem, right-click the Model
block or subsystem, and from the context menu, select Polyspace > Open
Results.

• From the Polyspace Interface, select File > Open and navigate to your results.
• If you selected Add to results repository the results are stored on the

Polyspace Metrics server. See “Download Results From Polyspace Metrics” on
page 5-6.

2 On the Results Summary tab, select a result.

When you select a result, the Result Details pane shows additional information
about the defect, including traceback information (if available).

3 Look at the result in the Source pane. Your select result is highlighted in the source
code.

4 Hover over the result in the source code. The tooltip can provide additional
information including variable ranges.

5 Above the defect, click a blue underlined link. For example, <Root>/Relational
Operator.

The Simulink model opens, highlighting the block related to the nearby source
code. This back-to-model linking allows you to fix defects in the model instead of the
generated code.

 Review Generated Code Results

7-17

Related Examples
• “View Results”
• “Polyspace Bug Finder Results”

More About
• “Troubleshoot Back to Model” on page 7-18

7 Polyspace Bug Finder Analysis in Simulink

7-18

Troubleshoot Back to Model

In this section...

“Back-to-Model Links Do Not Work” on page 7-18
“Your Model Already Uses Highlighting” on page 7-18

Back-to-Model Links Do Not Work

You may encounter issues with the back-to-model feature if:

• Your operating system is Windows Vista™ or Windows 7; and User Account Control
(UAC) is enabled or you do not have administrator privileges.

• You have multiple versions of MATLAB installed.

To reconnect MATLAB and Polyspace:

1 Close Polyspace.
2 At the MATLAB command-line, enter PolySpaceEnableCOMserver.

When you open your Polyspace results, the hyper-links will highlight the relevant
blocks in your model.

Your Model Already Uses Highlighting

If your model extensively uses block coloring, the coloring from this feature may interfere
with the colors already in your model. To change the color of blocks when they are linked
to Polyspace results use this command:

HILITE_DATA = struct('HiliteType', 'find', 'ForegroundColor', 'black', ...

 'BackgroundColor', color);

set_param(0, 'HiliteAncestorsData', HILITE_DATA)

Where color is one of the following:

• 'cyan'

• 'magenta'

• 'orange'

• 'lightBlue'

 Troubleshoot Back to Model

7-19

• 'red'

• 'green'

• 'blue'

• 'darkGreen'

8

Configure Model for Code Analysis

• “Configure Simulink Model” on page 8-2
• “Recommended Model Settings for Code Analysis” on page 8-3
• “Check Simulink Model Settings” on page 8-6
• “Annotate Blocks for Known Results” on page 8-12

8 Configure Model for Code Analysis

8-2

Configure Simulink Model

Before analyzing your generated code, there are certain settings that you should apply to
your model. Use the following workflow to prepare your model for code analysis.

• If you know of results ahead of time, annotate your blocks with Polyspace
annotations.

• Set the recommended configuration parameters.
• Double-check your model settings.
• Generate code.
• Set up your Polyspace options.

 Recommended Model Settings for Code Analysis

8-3

Recommended Model Settings for Code Analysis

For Polyspace analyses, set the following parameter configurations before generating
code. If you do not use the recommended value for SystemTargetFile, you get an error.
For all other parameters, if you do not use the recommended value, you get a warning.

Grouping Parameter Recommended value Name and Location in
Configuration

SystemTargetFile An Embedded Coder
Target Language Compiler
(TLC) file.
For example ert.tlc or
autosar.tlc.

Location: Code
Generation

Name: System
target file

Value: Embedded
Coder target file

MatFileLogging 'off' Location: Code
Generation >
Interface

Name: MAT-file
logging

Value: Not
selected

GenerateReport 'on' Location: Code
Generation >
Report

Name: Create
code-generation
report

Value: Selected

Code
Generation

IncludeHyperlinksInReport 'on' Location: Code
Generation >
Report

8 Configure Model for Code Analysis

8-4

Grouping Parameter Recommended value Name and Location in
Configuration

Name: Code-to-
model

Value: Selected
GenerateSampleERTMain 'off' Location: Code

Generation >
Templates

Name: Generate
an example main
program

Value: Not
selected

GenerateComments 'on' Location: Code
Generation >
Comments

Name: Include
comments

Value: Selected

Optimization

“Default parameter

behavior”

'Inlined' Location:
Optimization
> Signals and
Parameters

Name: Default
parameter
behavior

Value: Inlined

 Recommended Model Settings for Code Analysis

8-5

Grouping Parameter Recommended value Name and Location in
Configuration

InitFltsAndDblsToZero 'on' Location:
Optimization

Name: Use memset
to initialize floats
and doubles to 0.0

Value: Not
selected

ZeroExternalMemoryAtStartup 'on' when
Configuration
Parameters > Polyspace
> Data Range
Management > Output
is Global assert

Location:
Optimization

Name: Remove
root level I/O zero
initialization

Value: Not
selected

SolverType 'Fixed-Step' Location: Solver

Name: Type

Value: Fixed-step

Solver Solver 'FixedStepDiscrete' Location: Solver

Name: Solver

Value: discrete
(no continuous

states)

8 Configure Model for Code Analysis

8-6

Check Simulink Model Settings

With the Polyspace plug-in, you can check your model settings before generating code
or before starting an analysis. If you alter your model settings, rebuild the model to
generate fresh code. If the generated code version does not match your model version,
warnings appear when you run the analysis.

Check Simulink Model Settings Using the Code Generation Advisor

Before generating code, you can check your model settings against the “Recommended
Model Settings for Code Analysis” on page 8-3. If you do not use the recommended model
settings, the back-to-model linking will not work correctly.

1 From the Simulink model window, select Code > C/C++ Code > Code Generation
Options. The Configuration Parameters dialog box opens, displaying the Code
Generation pane.

2 Select Set Objectives.
3 From the Set Objective – Code Generation Advisor window, add the Polyspace

objective and any others that you want to check.
4 In the Check model before generating code drop-down list, select either:

• On (stop for warnings), the process stops for either errors or warnings
without generating code.

• On (proceed with warnings), the process stops for errors, but continues
generating code if the configuration only has warnings.

5 Select Check Model.

The software runs a configuration check. If your configuration check finds errors or
warnings, the Diagnostics Viewer displays the issues and recommendations.

 Check Simulink Model Settings

8-7

Check Simulink Model Settings Before Analysis

With the Polyspace plug-in, you can check your model settings before starting an
analysis:

1 From the Simulink model window, select Code > Polyspace > Options. The
Configuration Parameters dialog box opens, displaying the Polyspace pane.

2 Click Check configuration. If your model settings are not optimal for Polyspace,
the software displays warning messages with recommendations.

8 Configure Model for Code Analysis

8-8

3 From the Check configuration before verification menu, select either:

• On (stop for warnings), the analysis stops for either errors or warnings.
• On (proceed with warnings), the analysis stops for errors, but continues the

code analysis if the configuration only has warnings.
4 Select Run verification.

The software runs a configuration check. If your configuration check finds errors or
warnings, the Diagnostics Viewer displays the issues and recommendations.

 Check Simulink Model Settings

8-9

If you alter your model settings, rebuild the model to generate fresh code. If the
generated code version does not match your model version, the software produces
warnings when you run the analysis.

Check Simulink Model Settings Automatically

With the Polyspace plug-in, you can check your model settings before starting an
analysis:

1 From the Simulink model window, select Code > Polyspace > Options. The
Configuration Parameters dialog box opens, displaying the Polyspace pane.

2 Click Check configuration. If your model settings are not optimal for Polyspace,
the software displays warning messages with recommendations.

8 Configure Model for Code Analysis

8-10

3 From the Check configuration before verification menu, select either:

• On (stop for warnings) — will
• On (proceed with warnings)

4 Select Run verification.

The software runs a configuration check. If your configuration check finds errors or
warnings, the Diagnostics Viewer displays the issues and recommendations.

 Check Simulink Model Settings

8-11

If you select:

• On (stop for warnings), the analysis stops for either errors or warnings.
• On (proceed with warnings) — the analysis stops for errors, but continues

the code analysis if the configuration only has warnings.

If you alter your model settings, rebuild the model to generate fresh code. If the
generated code version does not match your model version, the software produces
warnings when you run the analysis.

More About
• “Recommended Model Settings for Code Analysis” on page 8-3

8 Configure Model for Code Analysis

8-12

Annotate Blocks for Known Results

You can annotate individual blocks in your Simulink model to inform Polyspace software
of known defects, run-time checks, or coding-rule violations. This allows you to highlight
and categorize previously identified results, so you can focus on reviewing new results.

Your Polyspace results displays the information that you provide with block annotations.
To annotate blocks:

1 In the Simulink model window, right-click the block you want to annotate.
2 From the context menu, select Polyspace > Annotate Selected Block > Edit. The

Polyspace Annotation dialog box opens.

 Annotate Blocks for Known Results

8-13

3 From the Annotation type drop-down list, select one of the following:

• Check — To indicate a Code Prover run-time error
• Defect — To indicate a Bug Finder defect
• MISRA-C — To indicate a MISRA C coding rule violation
• MISRA-C++ — To indicate a MISRA C++ coding rule violation
• JSF — To indicate a JSF C++ coding rule violation

4 If you want to highlight only one kind of result, select Only 1 check and the
relevant error or coding rule from the Select RTE check kind (or Select defect
kind, Select MISRA rule, Select MISRA C++ rule, or Select JSF rule) drop-
down list.

If you want to highlight a list of checks, clear Only 1 check. In the Enter a list of
checks (or Enter a list of defects, or Enter a list of rule numbers) field, specify
the errors or rules that you want to highlight.

5 Select a Status to describe how you intend to address the issue:

• Fix

• Improve

• Investigate

• Justified

(This status also marks the result as justified.)
• No action planned

(This status also marks the result as justified.)
• Other

6 Select a Severity to describe the severity of the issue:

• High

• Medium

• Low

• Not a defect

7 In the Comment field, enter additional information about the check.

8 Configure Model for Code Analysis

8-14

8 Click OK. The software adds the Polyspace annotation is to the block.

When you run an analysis, the Results Summary pane pre-populates the results
with your annotation.

See Also
pslinkfun

9

Configure Code Analysis Options

• “Polyspace Configuration for Generated Code” on page 9-2
• “Include Handwritten Code” on page 9-3
• “Configure Analysis Depth for Referenced Models” on page 9-4
• “Check Coding Rules Compliance” on page 9-5
• “Configure Polyspace Analysis Options and Properties” on page 9-7
• “Set Custom Target Settings” on page 9-11
• “Set Up Remote Batch Analysis” on page 9-14
• “Manage Results” on page 9-15
• “Specify Signal Ranges” on page 9-18

9 Configure Code Analysis Options

9-2

Polyspace Configuration for Generated Code

You do not have to manually create a Polyspace project or specify Polyspace options
before running an analysis for your generated code. By default, Polyspace automatically
creates a project and extracts the required information from your model. However, you
can modify or specify additional options for your analysis:

• You may incorporate separately created code within the code generated from your
Simulink model. See “Include Handwritten Code” on page 9-3.

• You may customize the options for your analysis. For example, to specify the target
environment or adjust precision settings. See “Configure Polyspace Analysis Options
and Properties” on page 9-7 and “Recommended Polyspace Bug Finder Options
for Analyzing Generated Code” on page 7-3.

• You may create specific configurations for batch runs. See “Save a Polyspace
Configuration File Template” on page 9-8.

• If you want to analyze code generated for a 16-bit target processor, you must specify
header files for your 16-bit compiler. See “Set Custom Target Settings” on page
9-11.

 Include Handwritten Code

9-3

Include Handwritten Code

Files such as S-function wrappers are, by default, not part of the Polyspace analysis.
However, you can add these files manually.

1 From the Simulink model window, select Code > Polyspace > Options. The
Configuration Parameters dialog box opens, displaying the Polyspace pane.

2 Select the Enable additional file list check box. Then click Select files. The Files
Selector dialog box opens.

3 Click Add. The Select files to add dialog box opens.
4 Use the Select files to add dialog box to:

• Navigate to the relevant folder
• Add the required files.

The software displays the selected files as a list under Additional files to analyze.

Note: To remove a file from the list, select the file and click Remove. To remove all
files from the list, click Remove all.

5 Click OK.

9 Configure Code Analysis Options

9-4

Configure Analysis Depth for Referenced Models

From the Polyspace pane, you can specify the analysis of generated code with respect to
model reference hierarchy levels:

• Model reference verification depth — From the drop-down list, select one of the
following:

• Current model only — Default. The Polyspace runs code from the top level
only. The software creates stubs to represent code from lower hierarchy levels.

• 1 — The software analyzes code from the top level and the next level. For
subsequent hierarchy levels, the software creates stubs.

• 2 — The software analyzes code from the top level and the next two hierarchy
levels. For subsequent hierarchy levels, the software creates stubs.

• 3 — The software analyzes code from the top level and the next three hierarchy
levels. For subsequent hierarchy levels, the software creates stubs.

• All — The software analyzes code from the top level and all lower hierarchy
levels.

• Model by model verification — Select this check box if you want the software to
analyze code from each model separately.

Note: The same configuration settings apply to all referenced models within a top model.
It does not matter whether you open the Polyspace pane from the top model window
(Code > Polyspace > Options) or through the right-click context menu of a particular
Model block within the top model. However, you can run analyses for code generated
from specific Model blocks. See “Run Analysis for Embedded Coder” on page 10-5.

 Check Coding Rules Compliance

9-5

Check Coding Rules Compliance

You can check compliance with MISRA AC AGC and MISRA C:2004, and MISRA C:2012
coding rules directly from your Simulink model.

In addition, you can choose to run coding rules checking either with or without full code
analysis.

To configure coding rules checking:

1 From the Simulink model window, select Code > Polyspace > Options. The
Polyspace pane opens.

2 In the Settings from drop-down menu, select the type of analysis you want to
perform.

Depending on the type of code generated, different settings are available. The
following tables describe the different settings.

C Code Settings

Setting Description

Project configuration Run Polyspace using the options
specified in the Project configuration.

Project configuration and MISRA

AC AGC checking

Run Polyspace using the options
specified in the Project configuration
and check compliance with the MISRA
AC-AGC rule set.

Project configuration and MISRA

C 2004 checking

Run Polyspace using the options
specified in the Project configuration
and check compliance with MISRA
C:2004 coding rules.

Project configuration and MISRA

C 2012 ACG checking

Run Polyspace using the options
specified in the Project configuration
and check compliance with MISRA
C:2012 coding guidelines.

MISRA AC AGC checking Check compliance with the MISRA AC-
AGC rule set. Polyspace stops after rules
checking.

9 Configure Code Analysis Options

9-6

Setting Description

MISRA C 2004 checking Check compliance with MISRA C:2004
coding rules. Polyspace stops after rules
checking.

MISRA C 2012 ACG checking Check compliance with MISRA C:2012
coding rules using generated code
categories. Polyspace stops after
guideline checking.

C++ Code Settings

Setting Description

Project configuration Run Polyspace using the options
specified in the Project configuration.

Project configuration and MISRA

C++ rule checking

Run Polyspace using the options
specified in the Project configuration
and check compliance with the MISRA C
++ coding rules.

Project configuration and JSF C

++ rule checking

Run Polyspace using the options
specified in the Project configuration
and check compliance with JSF C++
coding rules.

MISRA C++ rule checking Check compliance with the MISRA C++
coding rules. Polyspace stops after rules
checking.

JSF C++ rule checking Check compliance with JSF C++ coding
rules. Polyspace stops after rules
checking.

3 Click Apply to save your settings.

 Configure Polyspace Analysis Options and Properties

9-7

Configure Polyspace Analysis Options and Properties

From Simulink, you can specify Polyspace options to change the configuration of the
Polyspace Analysis. For example, you can specify the processor type and operating
system of your target device.

For descriptions of options, see “Analysis Options for C” or “Analysis Options for C++”.

There are two ways to configure analysis options:

In this section...

“Set Advanced Analysis Options” on page 9-7
“Save a Polyspace Configuration File Template” on page 9-8
“Use a Custom Configuration File” on page 9-9
“Remove Polyspace Options From Simulink Model” on page 9-9

Set Advanced Analysis Options

1 From Simulink, select Code > Polyspace > Options.
2 In the Polyspace parameter configuration pane, select Configure.

The Polyspace Configuration window opens.
3 Set options required by your application.

The first time you open the configuration, the software sets certain options by
default depending on your code generator.

4
On the toolbar, click the Project properties icon .

9 Configure Code Analysis Options

9-8

Save a Polyspace Configuration File Template

During a batch run, you may want use different configurations. At the MATLAB
command-line, use pslinkfun('settemplate',...) to apply a configuration defined
by a configuration file template.

To create a configuration file template:

1 In the Simulink model window, select Code > Polyspace > Options. The
Parameter Configuration window opens to the Polyspace pane.

2 Click Configure.

The Polyspace Configuration window opens. Use this pane to customize the target
and cross compiler.

3 Save your changes and close.
4 Make a copy of the updated project configuration file, for example,

my_first_code_polyspace.psprj.

 Configure Polyspace Analysis Options and Properties

9-9

5 Rename the copy, for example, my_cross_compiler.psprj. This is your new
configuration file template.

To use a configuration template:

• Run the pslinkfun command in the MATLAB Command Window. For example:

pslinkfun('settemplate','C:\Work\my_cross_compiler.psprj')

• Add the file in the Parameter Configuration window. See “Use a Custom
Configuration File” on page 9-9.

Use a Custom Configuration File

If you already have a configuration you want to use, you can add the configuration file to
your project.

1 From Simulink, select Code > Polyspace > Options.
2 In the Polyspace parameter configuration pane, select Use custom project file.
3 In the text box, enter the full path to a .psprj file, or click Browse for project file

to browse for a .psprj file.

Remove Polyspace Options From Simulink Model

You can remove Polyspace configuration information from your Simulink model.

For a top model:

1 Select Code > Polyspace > Remove Options from Current Configuration.
2 Save the model.

For a Model block or subsystem:

1 Right-click the Model block or subsystem.
2 From the context menu, select Polyspace > Remove Options from Current

Configuration.
3 Save the model.

See Also
pslinkfun | pslinkoptions

9 Configure Code Analysis Options

9-10

Related Examples
• “Save a Polyspace Configuration File Template” on page 9-8

More About
• “Embedded Coder Considerations” on page 7-2
• “TargetLink Considerations” on page 7-5
• “Recommended Polyspace Bug Finder Options for Analyzing Generated Code” on

page 7-3

 Set Custom Target Settings

9-11

Set Custom Target Settings

If your target has specific setting, you can analyze your code in context of those settings.
For example, if you want to analyze code generated for a 16-bit target processor, you
must specify header files for your 16-bit compiler. The software automatically identifies
the compiler from the Simulink model. If the compiler is 16-bit and you do not specify the
relevant header files, the software produces an error when you try to run an analysis.

Note: For a 32-bit or 64-bit target processor, the software automatically specifies the
default header file.

1 In the Simulink model window, select Code > Polyspace > Options. The
Parameter Configuration window opens to the Polyspace pane.

2 Click Configure.

The Polyspace Configuration window opens. Use this pane to customize the target
and cross compiler.

3 From the Configuration tree, expand the Target & Compiler node.
4 In the Target Environment section, use the Target processor type option to

define the size of data types.

a From the drop-down list, select mcpu...(Advanced). The Generic target
options dialog box opens.

9 Configure Code Analysis Options

9-12

Use this dialog box to create a new target and specify data types for the target.
Then click Save.

5 From the Configuration tree, select Target & Compiler > Macros. Use the
Preprocessor definitions section to define preprocessor macros for your cross-
compiler.

To add a macro, in the Macros table, select . In the new line, enter the required
text.

To remove a macro, select the macro and click .

Note: If you use the LCC cross-compiler, then you must specify the
MATLAB_MEX_FILE macro.

6 Select Target & Compiler > Environment Settings.

 Set Custom Target Settings

9-13

7 In the Include folders (or Include) section, specify a folder (or header file) path by
doing one of the following:

•
Select and enter the folder or file path.

•
Select and use the dialog box to navigate to the required folder (or file).

You can remove an item from the displayed list by selecting the item and then

clicking .
8 Save your changes and close.

To use your configuration settings in other projects, see “Save a Polyspace
Configuration File Template” on page 9-8.

9 Configure Code Analysis Options

9-14

Set Up Remote Batch Analysis

By default, the Polyspace software runs locally. To specify a remote analysis:

1 From the Simulink model window, select Code > Polyspace > Options. The
Configuration Parameters dialog box opens, displaying the Polyspace pane.

2 Select Configure.
3 In the Polyspace Configuration window, select the Distributed Computing pane.
4 Select the Batch check box.
5 If you use Polyspace Metrics as a results repository, select Add to results

repository.

Before running your must also make sure you are connected to a Server.
6 From the toolbar, select Options > Preferences. For help filling in this dialog, see

“Configure Polyspace Preferences”.
7 Close the configuration window and save your changes.
8 Select Apply.

 Manage Results

9-15

Manage Results

In this section...

“Open Polyspace Results Automatically” on page 9-15
“Specify Location of Results” on page 9-16
“Save Results to a Simulink Project” on page 9-17

Polyspace creates a set of analysis results

Open Polyspace Results Automatically

You can configure the software to automatically open your Polyspace results after you
start the analysis. If you are doing a remote analysis, the Polyspace Metrics webpage
opens. When the remote job is complete, you can download your results from Polyspace
Metrics. If you are doing a local analysis, when the local job is complete, the Polyspace
environment opens the results in the Polyspace interface.

To configure the results to open automatically:

1 From the model window, select Code > Polyspace > Options.

The Polyspace pane opens.

9 Configure Code Analysis Options

9-16

2 In the Results review section, select Open results automatically after
verification.

3 Click Apply to save your settings.

Specify Location of Results

By default, the software stores your results in Current
Folder\results_model_name. Every time you rerun, your old results are over written.
To customize these options:

1 From the Simulink model window, select Code > Polyspace > Options. The
Configuration Parameters dialog box opens to the Polyspace pane.

2 In the Output folder field, specify a full path for your results folder. By default, the
software stores results in the current folder.

3 If you want to avoid overwriting results from previous analyses, select Make output
folder name unique by adding a suffix.

 Manage Results

9-17

Instead of overwriting an existing folder, the software specifies a new location for the
results folder by appending a unique number to the folder name.

Save Results to a Simulink Project

By default, the software stores your results in Current
Folder\results_model_name. If you use a Simulink project for your model work, you
can store your Polyspace results there as well for better organization. To add your results
to a Simulink Project:

1 Open your Simulink project.
2 From the Simulink model window, select Code > Polyspace > Options. The

Configuration Parameters dialog box opens with the Polyspace pane displayed.
3 Select Add results to current Simulink Project.
4 Run your analysis.

Your results are saved to the Simulink project you opened in step 1.

9 Configure Code Analysis Options

9-18

Specify Signal Ranges

If you constrain signals in your Simulink model to lie within specified ranges, Polyspace
software automatically applies these constraints during verification of the generated
code. This can improve the precision of your results.

You can specify a range for a model signal by:

• Applying constraints through source block parameters. See “Specify Signal Range
through Source Block Parameters” on page 9-18.

• Constraining signals through the base workspace. See “Specify Signal Range through
Base Workspace” on page 9-20.

Note: You can also manually define data ranges using the DRS feature in the Polyspace
verification environment. If you manually define a DRS file, the software automatically
appends any signal range information from your model to the DRS file. However,
manually defined DRS information overrides information generated from the model for
all variables.

Specify Signal Range through Source Block Parameters

You can specify a signal range by applying constraints to source block parameters.

Specifying a range through source block parameters is often easier than creating
signal objects in the base workspace, but must be repeated for each source block. For
information on using the base workspace, see “Specify Signal Range through Base
Workspace” on page 9-20.

To specify a signal range using source block parameters:

1 Double-click the source block in your model. The Source Block Parameters dialog box
opens.

2 Select the Signal Attributes tab.
3 Specify the Minimum value for the signal, for example, -15.
4 Specify the Maximum value for the signal, for example, 15.

 Specify Signal Ranges

9-19

5 Click OK.

9 Configure Code Analysis Options

9-20

Specify Signal Range through Base Workspace

You can specify a signal range by creating signal objects in the MATLAB workspace.
This information is used to initialize each global variable to the range of valid values, as
defined by the min-max information in the workspace.

Note: You can also specify a signal range by applying constraints to individual source
block parameters. This method can be easier than creating signal objects in the base
workspace, but must be repeated for each source block. For more information, see
“Specify Signal Range through Source Block Parameters” on page 9-18.

To specify an input signal range through the base workspace:

1 Configure the signal to use, for example, the ExportedGlobal storage class:

a Right-click the signal. From the context menu, select Properties. The Signal
Properties dialog box opens.

b In the Signal name field, enter a name, for example, my_entry1.
c Select the Code Generation tab.
d In the Package drop-down list, select Simulink.
e In the Storage class drop-down list, select ExportedGlobal.

 Specify Signal Ranges

9-21

f Click OK, which applies your changes and closes the dialog box.
2 Using Model Explorer, specify the signal range:

a Select Tools > Model Explorer to open Model Explorer.
b From the Model Hierarchy tree, select Base Workspace.
c Click the Add Simulink Signal button to create a signal. Rename this signal,

for example, my_entry1.
d Set the Minimum value for the signal, for example, to -15.
e Set the Maximum value for the signal, for example, to 15.
f From the Storage class drop-down list, select ExportedGlobal.

9 Configure Code Analysis Options

9-22

g Click Apply.

10

Run Polyspace on Generated Code

• “Specify Type of Analysis to Perform” on page 10-2
• “Run Analysis for Embedded Coder” on page 10-5
• “Run Analysis for TargetLink” on page 10-6
• “Monitor Progress” on page 10-7

10 Run Polyspace on Generated Code

10-2

Specify Type of Analysis to Perform

Before running Polyspace, you can specify what type of analysis you want to run. You can
choose to run code analysis, coding rules checking, or both.

To specify the type of analysis to run:

1 From the Simulink model window, select Code > Polyspace > Options. The
Configuration Parameter window opens to the Polyspace options pane.

2 In the Settings from drop-down menu, select the type of analysis you want to
perform.

Depending on the type of code generated, different settings are available. The
following tables describe the different settings.

C Code Settings

 Specify Type of Analysis to Perform

10-3

Setting Description

Project configuration Run Polyspace using the options
specified in the Project configuration.

Project configuration and MISRA

AC AGC rule checking

Run Polyspace using the options
specified in the Project configuration
and check compliance with the MISRA
AC-AGC rule set.

Project configuration and MISRA

rule checking

Run Polyspace using the options
specified in the Project configuration
and check compliance with MISRA C
coding rules.

MISRA AC AGC rule checking Check compliance with the MISRA AC-
AGC rule set. Polyspace stops after rules
checking.

MISRA rule checking Check compliance with MISRA C
coding rules. Polyspace stops after rules
checking.

10 Run Polyspace on Generated Code

10-4

C++ Code Settings

Setting Description

Project configuration Run Polyspace using the options
specified in the Project configuration.

Project configuration and MISRA

C++ rule checking

Run Polyspace using the options
specified in the Project configuration
and check compliance with the MISRA C
++ coding rules.

Project configuration and JSF C

++ rule checking

Run Polyspace using the options
specified in the Project configuration
and check compliance with JSF C++
coding rules.

MISRA C++ rule checking Check compliance with the MISRA C++
coding rules. Polyspace stops after rules
checking.

JSF C++ rule checking Check compliance with JSF C++ coding
rules. Polyspace stops after rules
checking.

3 Click Apply to save your settings.

 Run Analysis for Embedded Coder

10-5

Run Analysis for Embedded Coder

To start Polyspace with:

• Code generated from the top model, from the Simulink model window, select Code >
Polyspace > Verify Code Generated for > Model.

• All code generated as model referenced code, from the model window, select Code >
Polyspace > Verify Code Generated for > Referenced Model.

• Model reference code associated with a specific block or subsystem, right-click the
Model block or subsystem. From the context menu, select Verify Code Generated
for > Selected Subsystem.

Note: You can also start the Polyspace software from the Polyspace configuration
parameter pane by clicking Run verification.

When the Polyspace software starts, messages appear in the MATLAB Command
window:
Starting Polyspace verification for Embedded Coder

Creating results folder C:\PolySpace_Results\results_my_first_code

 for system my_first_code

Checking Polyspace Model-Link Configuration:

Parameters used for code verification:

 System : my_first_code

 Results Folder : C:\PolySpace_Results\results_my_first_code

 Additional Files : 0

 Remote : 0

 Model Reference Depth : Current model only

 Model by Model : 0

 DRS input mode : DesignMinMax

 DRS parameter mode : None

 DRS output mode : None

...

Follow the progress of the analysis in the MATLAB Command window. If you are
running a remote, batch, analysis you can follow the later stages through the Polyspace
Job Monitor.

The software writes status messages to a log file in the results folder.

10 Run Polyspace on Generated Code

10-6

Run Analysis for TargetLink

To start the Polyspace software:

1 In your model, select the Target Link subsystem.
2 In the Simulink model window select Code > Polyspace > Verify Code

Generated for > Selected Target Link Subsystem.

Messages appear in the MATLAB Command window:
Starting Polyspace verification for Embedded Coder

Creating results folder results_WhereAreTheErrors_v2

 for system WhereAreTheErrors_v2

Parameters used for code verification:

 System : WhereAreTheErrors_v2

 Results Folder : H:\Desktop\Test_Cases\ModelLink_Testers

 \results_WhereAreTheErrors_v2

 Additional Files : 0

 Verifier settings : PrjConfig

 DRS input mode : DesignMinMax

 DRS parameter mode : None

 DRS output mode : None

 Model Reference Depth : Current model only

 Model by Model : 0

The exact messages depend on the code generator you use and the Polyspace
product. The software writes status messages to a log file in the results folder.

Follow the progress of the software in the MATLAB Command Window. If you are
running a remote, batch analysis, you can follow the later stages through the Polyspace
Job Monitor

 Monitor Progress

10-7

Monitor Progress

In this section...

“Local Analyses” on page 10-7
“Remote Batch Analyses” on page 10-7

Local Analyses

For a local Polyspace runs, you can follow the progress of the software in the MATLAB
Command Window. The software also saves the status messages to a log file in the
results folder.

Remote Batch Analyses

For a remote analysis, you can follow the initial stages of the analysis in the MATLAB
Command window.

Once the compilation phase is complete, you can follow the progress of the software using
the Polyspace Job Monitor.

From Simulink, select Code > Polyspace > Open Job Monitor

11

Check Coding Rules from Eclipse

• “Activate Coding Rules Checker” on page 11-2
• “Select Specific MISRA or JSF Coding Rules” on page 11-6
• “Create Custom Coding Rules File” on page 11-9
• “Contents of Custom Coding Rules File” on page 11-11
• “Exclude Files From Analysis” on page 11-12
• “Allow Custom Pragma Directives” on page 11-13
• “Specify Boolean Types” on page 11-14
• “Find Coding Rule Violations” on page 11-15
• “Review Coding Rule Violations” on page 11-16
• “Filter and Group Coding Rule Violations” on page 11-18

11 Check Coding Rules from Eclipse

11-2

Activate Coding Rules Checker

This example shows how to activate the coding rules checker before you start an analysis.
This activation enables the Polyspace Bug Finder plug-in to search for coding rule
violations. You can view the coding rule violations in your analysis results.

1 Open project configuration.
2 On the Configuration pane, select Coding Rules & Code Metrics.
3 Select the check box for the type of coding rules that you want to check.

For C code, you can check compliance with:

• MISRA C:2004
• MISRA AC AGC
• MISRA C:2012

If you have generated code, use the Use generated code requirements option
to use the MISRA C:2012 categories for generated code.

• Custom coding rules

For C++ code, you can check compliance with:

• MISRA C++: 2008
• JSF C++
• Custom coding rules

4 For each rule type that you select, from the drop-down list, select the subset of rules
to check.

Checking for certain rules can cause the analysis to run longer than usual. For more
information, see “Rules to Disable for Faster Analysis” on page 3-21.

MISRA C:2004

Option Description

required-rules All required MISRA C:2004 coding rules.
all-rules AllMISRA C:2004 coding rules (required and advisory).

 Activate Coding Rules Checker

11-3

Option Description

SQO-subset1

A small subset of MISRA C:2004 rules. In Polyspace Code
Prover, observing these rules can reduce the number of
unproven results.

SQO-subset2

A second subset of rules that include the rules in SQO-
subset1 and contain some additional rules. In Polyspace
Code Prover, observing the additional rules can further
reduce the number of unproven results.

custom A set of MISRA C:2004 coding rules that you specify.

MISRA AC AGC

Option Description

OBL-rules All required MISRA AC AGC coding rules.

OBL-REC-rules
All required and recommended MISRA AC AGC coding
rules.

all-rules All required, recommended, and readability coding rules.

SQO-subset1

A small subset of MISRA AC AGC rules. In Polyspace
Code Prover, observing these rules can reduce the number
of unproven results.

SQO-subset2

A second subset of MISRA AC AGC rules that include the
rules in SQO-subset1 and contain some additional rules.
In Polyspace Code Prover, observing the additional rules
can further reduce the number of unproven results.

custom A set of MISRA AC AGC coding rules that you specify.

MISRA C:2012

Option Description

mandatory

All mandatory MISRA C:2012 coding rules. If you have
generated code, also use the Use generated code
requirements option categorization for generated code.

11 Check Coding Rules from Eclipse

11-4

Option Description

mandatory-required

All mandatory and required MISRA C:2012 coding rules.
If you have generated code, also use the Use generated
code requirements option categorization for generated
code.

all
All MISRA C:2012 coding rules (mandatory, required, and
advisory).

SQO-subset1

A small subset of MISRA C rules. In Polyspace Code
Prover, observing these rules can reduce the number of
unproven results.

SQO-subset2

A second subset of rules that include the rules in SQO-
subset1 and contain some additional rules. In Polyspace
Code Prover, observing the additional rules can further
reduce the number of unproven results.

custom A set of MISRA C:2012 coding rules that you specify.

MISRA C++

Option Description

required-rules All required MISRA C++ coding rules.
all-rules All required and advisory MISRA C++ coding rules.

SQO-subset1

A small subset of MISRA C++ rules. In Polyspace Code
Prover, observing these rules can reduce the number of
unproven results.

SQO-subset2

A second subset of rules with indirect impact on the
selectivity in addition to SQO-subset1. In Polyspace Code
Prover, observing the additional rules can further reduce
the number of unproven results.

custom A specified set of MISRA C++ coding rules.

JSF C++

Option Description

shall-rules Shall rules are mandatory requirements. These rules
require verification.

 Activate Coding Rules Checker

11-5

Option Description

shall-will-rules All Shall and Will rules. Will rules are intended to be
mandatory requirements. However, these rules do not
require verification.

all-rules All Shall, Will, and Should rules. Should rules are
advisory rules.

custom A set of JSF C++ coding rules that you specify.

5 If you select Check custom rules, specify the path to your custom rules file or click
Edit to create one.

When rules checking is complete, the software displays the coding rule violations in
purple on the Results Summary pane.

Related Examples
• “Select Specific MISRA or JSF Coding Rules” on page 11-6
• “Create Custom Coding Rules File” on page 11-9

11 Check Coding Rules from Eclipse

11-6

Select Specific MISRA or JSF Coding Rules

This example shows how to specify a subset of MISRA or JSF rules for the coding rules
checker. If you select custom from the MISRA or JSF drop-down list, you must provide a
file that specifies the rules to check.

1 Open the project configuration.
2 In the Configuration tree view, select Coding Rules & Code Metrics.
3 Select the check box for the type of coding rules you want to check.
4 From the corresponding drop-down list, select custom. The software displays a new

field for your custom file.
5 To the right of this field, click Edit. A New File window opens, displaying a table of

rules.

 Select Specific MISRA or JSF Coding Rules

11-7

6 If you already have a customized rule file you want to edit, reload your customization

using the button.
7 Select the rules you want to check.

You can select categories of rules (required, advisory, mandatory), subsets of rules by
rule chapter, or individual rules.

8 When you are finished, click OK.

11 Check Coding Rules from Eclipse

11-8

9 For new files, use the Save As dialog box the opens to save your customization as a
rules file.

10 In the Configuration window, the full path to the rules file appears in the custom
field. To reuse this customized set of rules for other projects, enter this path name in
the dialog box.

Related Examples
• “Activate Coding Rules Checker” on page 11-2
• “Create Custom Coding Rules File” on page 11-9

 Create Custom Coding Rules File

11-9

Create Custom Coding Rules File

This example shows how to create a custom coding rules file. You can use this file to
check names or text patterns in your source code against custom rules that you specify.
For each rule, you specify a pattern in the form of a regular expression. The software
compares the pattern against identifiers in the source code and determines whether the
custom rule is violated.

1 Create Coding Rules File

1 Create a Polyspace project. Add printInitialValue.c to the project.
2 On the Configuration pane, select Coding Rules & Code Metrics. Select the

Check custom rules box.
3

Click .

The New File window opens, displaying a table of rule groups.
4 Clear the Custom rules check box to turn off checking of all custom rules.
5 Expand the 4 Structs node. For the option 4.3 All struct fields must follow

the specified pattern:

Column Title Action

Status Select .
Convention Enter All struct fields must

begin with s_ and have capital

letters or digits

Pattern Enter s_[A-Z0-9_]+
Comment Leave blank. This column is for

comments that appear in the coding
rules file alone.

2 Review Coding Rule Violations

1 Save the file and run the verification. On the Results Summary pane, you see
two violations of rule 4.3. Select the first violation.

a On the Source pane, the line int a; is marked.

11 Check Coding Rules from Eclipse

11-10

b On the Result Details pane, you see the error message you had entered,
All struct fields must begin with s_ and have capital

letters

2 Right-click on the Source pane and select Open Editor. The file
printInitialValue.c opens in the Code Editor pane or an external text
editor depending on your Preferences.

3 In the file, replace all instances of a with s_A and b with s_B. Rerun the
verification.

The custom rule violations no longer appear on the Results Summary pane.

Related Examples
• “Activate Coding Rules Checker” on page 11-2
• “Select Specific MISRA or JSF Coding Rules” on page 11-6

More About
• “Contents of Custom Coding Rules File” on page 11-11

 Contents of Custom Coding Rules File

11-11

Contents of Custom Coding Rules File

In a custom coding rules file, each rule appears in the following format:
N.n off|on

convention=violation_message

pattern=regular_expression

• N.n — Custom rule number, for example, 1.2.
• off — Rule is not considered.
• on — The software checks for violation of the rule. After verification, it displays the

coding rule violation on the Results Summary pane.
• violation_message — Software displays this text in an XML file within the

Results/Polyspace-Doc folder.
• regular_expression — Software compares this text pattern against a source code

identifier that is specific to the rule. See “Custom Coding Rules”.

The keywords convention= and pattern= are optional. If present, they apply to
the rule whose number immediately precedes these keywords. If convention= is not
given for a rule, then a standard message is used. If pattern= is not given for a rule,
then the default regular expression is used, that is, .*.

Use the symbol # to start a comment. Comments are not allowed on lines with the
keywords convention= and pattern=.

The following example contains three custom rules: 1.1, 8.1, and 9.1.
Custom rules configuration file

1.1 off # Disable custom rule number 1.1

8.1 on # Violation of custom rule 8.1 produces a warning

convention=Global constants must begin by G_ and must be in capital letters.

pattern=G_[A-Z0-9_]*

9.1 on # Non-adherence to custom rule 9.1 produces a warning

convention=Global variables should begin by g_.

pattern=g_.*

Related Examples
• “Create Custom Coding Rules File” on page 11-9

11 Check Coding Rules from Eclipse

11-12

Exclude Files From Analysis

This example shows how to exclude certain files from coding rules checking and defect
checking.

1 Open the project configuration.
2 In the Configuration tree view, select Inputs & Stubbing.
3 Select the Files and folders to ignore check box.
4 From the corresponding drop-down list, select one of the following:

• all-headers (default) — Excludes header files in the Include folders of your
project. For example .h or .hpp files.

• all — Excludes all include files in the Include folders of your project. For
example, if you are checking a large code base with standard or Visual headers,
excluding include folders can significantly improve the speed of code analysis.

• custom — Excludes files or folders specified in the File/Folder view. To add

files to the custom File/Folder list, select to choose the files and folders to
exclude. To remove a file or folder from the list of excluded files and folders, select

the row. Then click .

Related Examples
• “Customize Analysis Options” on page 12-3

 Allow Custom Pragma Directives

11-13

Allow Custom Pragma Directives

This example shows how to exclude custom pragma directives from coding rules
checking. MISRA C rule 3.4 requires checking that pragma directives are documented
within the documentation of the compiler. However, you can allow undocumented
pragma directives to be present in your code.

1 Open project configuration.
2 In the Configuration tree view, select Coding Rules & Code Metrics.
3

To the right of Allowed pragmas, click .

In the Pragma view, the software displays an active text field.
4 In the text field, enter a pragma directive.
5

To remove a directive from the Pragma list, select the directive. Then click .

Related Examples
• “Activate Coding Rules Checker” on page 11-2

11 Check Coding Rules from Eclipse

11-14

Specify Boolean Types

This example shows how to specify data types you want Polyspace to consider as Boolean
during MISRA C rules checking. The software applies this redefinition only to data types
defined by typedef statements.

The use of this option is related to checking of the following rules:

• MISRA C:2004 and MISRA AC AGC —12.6, 13.2, 15.4.

For more information, see “MISRA C:2004 and MISRA AC AGC Coding Rules” on
page 2-14.

• MISRA C:2012 — 10.1, 10.3, 10.5, 14.4 and 16.7

1 Open project configuration.
2 In the Configuration tree view, select Coding Rules & Code Metrics.
3

To the right of Effective boolean types, click .

In the Type view, the software displays an active text field.
4 In the text field, specify the data type that you want Polyspace to treat as Boolean.
5

To remove a data type from the Type list, select the data type. Then click .

Related Examples
• “Activate Coding Rules Checker” on page 11-2

 Find Coding Rule Violations

11-15

Find Coding Rule Violations

This example shows how to check for coding rule violations alone.

1 Open project configuration.
2 In the Configuration tree view, select Coding Rules & Code Metrics. Activate

the desired coding rule checker.

For more information, see “Activate Coding Rules Checker” on page 3-2.
3 Checking for certain rules can cause the analysis to run longer than usual. Disable

those rules if you want.

For more information, see “Rules to Disable for Faster Analysis” on page 3-21.
4 Specify that the analysis must not look for defects.

• In the Configuration tree view, select Bug Finder Analysis.
• Clear the Find defects check box.

5
Click to run the coding rules checker without checking defects.

Related Examples
• “Activate Coding Rules Checker” on page 11-2
• “Select Specific MISRA or JSF Coding Rules” on page 11-6
• “Review Coding Rule Violations” on page 11-16

11 Check Coding Rules from Eclipse

11-16

Review Coding Rule Violations

This example shows how to review coding rule violations once code analysis is complete.
After analysis, the Results Summary - Bug Finder tab displays the rule violations
with a

• symbol for predefined coding rules such as MISRA C:2004.
• symbol for custom coding rules.

In addition, Polyspace Bug Finder highlights defects in your source code in the following
ways:

• A or mark appears before the line number on the left.
• A icon appears in the overview ruler to the right of the line containing the rule

violation.

To further review a coding rule violation and determine your course of action:

1 Select the coding rule violation on the Results Summary - Bug Finder tab.
2 On the Result Details pane, view the location and description of the violated rule.

In the source code, the line containing the violation appears highlighted.
3

For MISRA C: 2012 rules, on the Result Details pane, click the icon to see the
rationale for the rule. In some cases, you can also see code examples illustrating the
violation.

4 Review the violation in your code.

a Determine whether you must fix the code to avoid the violation.
b If you choose to retain the code, on the Result Details pane, add a comment

explaining why you retain the code. This comment helps you or other reviewers
avoid reviewing the same coding rule violation twice.

You can also assign a Severity and Status to the coding rule violation.
5 After you have fixed or justified the coding rule violations, run the analysis again.

Related Examples
• “Activate Coding Rules Checker” on page 11-2
• “Find Coding Rule Violations” on page 11-15

 Review Coding Rule Violations

11-17

• “Filter and Group Coding Rule Violations” on page 11-18

11 Check Coding Rules from Eclipse

11-18

Filter and Group Coding Rule Violations

This example shows how to use filters in the Results Summary pane to focus on
specific kinds of coding rule violations. By default, the software displays both coding rule
violations and defects.

In this section...

“Filter Coding Rules” on page 11-18
“Group Coding Rules” on page 11-18
“Suppress Certain Rules from Display in One Click” on page 11-18

Filter Coding Rules

1 On the Results Summary pane, place your cursor on the Check column header.
Click the filter icon that appears.

2 From the context menu, clear the All check box.
3 Select the violated rule numbers that you want to focus on.
4 Click OK.

Group Coding Rules

1 On the Results Summary pane, select Group by > Family.

The rules are grouped by numbers. Each group corresponds to a certain code
construct.

2 Expand the group nodes to select an individual coding rule violation.

Suppress Certain Rules from Display in One Click

Instead of filtering individual rules from display each time you open your results, you can
limit the display of rule violations in one click. To limit the display of rule violations, use
the Show menu on the Results Summary pane. You can create your own options on
this menu. You can share the option file to help developers in your organization review
violations of at least certain coding rules.

 Filter and Group Coding Rule Violations

11-19

1 In the Polyspace user interface, select Tools > Preferences.
2 On the Review Scope tab, do one of the following:

• To add predefined options to the Show menu, select Include Quality
Objectives Scopes.

The Scope Name list shows additional options, HIS, SQO-4, SQO-5, and SQO-6.
Select an option to see which rules are suppressed from display.

In addition to coding rule violations, the options impose limits on the display of
code metrics and defects.

• To create your own option on the Show menu, select New. Save your option file.

On the left pane, select a rule set such as MISRA C:2012. On the right pane, to
suppress a rule from display, clear the box next to the rule.

To suppress all rules belonging to a group such as The essential type model,
clear the box next to the group name. For more information on the groups, see
“Coding Rules”. If only a fraction of rules in a group is selected, the check box
next to the group name displays a symbol.

To suppress all rules belonging to a category such as advisory, clear the box
next to the category name on the top of the right pane. If only a fraction of rules
in a category is selected, the check box next to the category name displays a
symbol.

11 Check Coding Rules from Eclipse

11-20

3 Select Apply or OK.

On the Results Summary pane, the Show menu displays the additional options.
4 Select the option that you want. The rules that you suppress do not appear on the

Results Summary pane.

Related Examples
• “Activate Coding Rules Checker” on page 11-2
• “Review Coding Rule Violations” on page 11-16

12

Find Bugs from Eclipse

• “Run Analysis” on page 12-2
• “Customize Analysis Options” on page 12-3

12 Find Bugs from Eclipse

12-2

Run Analysis

1 Switch to the Polyspace perspective.

a Select Window > Open Perspective > Other.
b In the Open Perspective dialog box, select Polyspace.

This allows you to view only the information related to a Polyspace verification.
2 If you previously ran a Polyspace Code Prover verification, open the Polyspace Run

- Code Prover view. In the dropdown list beside the icon, select Bug Finder.
3 To start an analysis, do one of the following:

• In the Project Explorer, right-click the project containing the files that you
want to verify and select Run Polyspace Bug Finder.

• In the Project Explorer, select the project containing the files that you want to
verify. From the global menu, select Polyspace > Run.

You can follow the progress of the analysis in the Polyspace Run - Bug Finder
view. If you see an error or warning during the compilation phase, double-click it
to go to the corresponding location in the source code. Once the analysis is over, the
results are displayed in the Results Summary - Bug Finder view.

4 If results are available, the icon in the Polyspace Run - Bug Finder view turns

to . Click the icon to load available results.

With your results open, if additional results are available, the icon is still visible.

Click the icon to load all available results.
5 To stop an analysis, select Polyspace > Stop. Alternatively you can use the

button in the Polyspace Run - Bug Finder view.

 Customize Analysis Options

12-3

Customize Analysis Options

The software uses a set of default analysis options preconfigured for your coding
language and operating system. For each project, you can customize your configuration.

1 From the global menu, select Polyspace > Configure Project.

The Polyspace Bug Finder Configuration window appears.
2 Select the different nodes to change your analysis configuration.

For example:

a Select the Coding Rules node.
b Select Check MISRA C:2004 to check for violations of MISRA C:2004 coding

rules.

For information about the different analysis options, see “Analysis Options for C” or
“Analysis Options for C++”.

13

View Results in Eclipse

• “View Results” on page 13-2
• “Review and Fix Results” on page 13-3
• “Filter and Group Results” on page 13-5
• “Understanding the Results Views” on page 13-8

13 View Results in Eclipse

13-2

View Results

This example shows how to view Polyspace Bug Finder results. After you run an
analysis, you can view the results either in Eclipse or from the Polyspace Bug Finder
interface.

In this section...

“View Results in Eclipse” on page 13-2
“View Results in Polyspace Environment” on page 13-2

View Results in Eclipse

After you run an analysis in Eclipse, your results automatically appear on the Results
Summary - Bug Finder tab.

• If you closed the Results Summary - Bug Finder tab, select Polyspace > Show
View > Show Results Summary view to reopen the tab.

• If you need to reload the results, select Polyspace > Reload results.

This option is useful when you reopen Eclipse or when you are switching between
Polyspace projects.

View Results in Polyspace Environment

To view your results in the Polyspace Bug Finder interface, select Polyspace > Open
Results in PVE.

Note: You can view defects, coding rule violations and code metrics from the Eclipse
environment. However, you can impose limits on metrics only from the Polyspace
environment. For more information, see “Review Code Metrics” on page 5-30.

Related Examples
• “Run Analysis” on page 12-2

 Review and Fix Results

13-3

Review and Fix Results

This example shows how to review and comment results obtained from a Polyspace Bug
Finder analysis. When reviewing results, you can assign a status and severity to the
defects and enter comments to describe the results of your review. These actions help you
to track the progress of your review and avoid reviewing the same defect twice. If you run
successive analyses on the same project, the review status, severity and comments from
the previous analysis will be automatically imported into the next.

After analysis, the results appear on the Results Summary - Bug Finder tab. In
addition, Polyspace Bug Finder highlights defects in your source code in the following
ways:

• An ! mark appears before the line number on the left.
• The operation containing the defect has a wavy red underlining.
• A icon appears in the overview ruler to the right of the line containing the defect.
• A icon appears at the top of the overview ruler. If you place your cursor on the icon,

a tooltip states the total number of defects in the file.

To further review a defect and determine your course of action:

1 On the Results Summary - Bug Finder tab, select the defect that you want to
review.

The Result Details pane displays information about the current defect.
2

On the Result Details pane, click the icon to see a brief description and code
examples for the defect. In some cases, you can also see risks associated with not
fixing the defect and a suggested fix.

3 Investigate the result further. Determine whether to fix your code, review the result
later, or retain the code but provide some explanation.

4 On the Result Details pane, provide the following review information for the result:

• Severity to describe how critical you consider the issue.
• Status to describe how you intend to address the issue.

You can also create your own status or associate justification with an existing
status from the Polyspace user interface. Select Tools > Preferences and create
or modify statuses on the Review Statuses tab.

13 View Results in Eclipse

13-4

• Comment to describe any other information about the result.
5 To provide review information for several results together, select the results. Then,

provide review information for a single result.

To select the results in a group:

• If the results are contiguous, left-click the first result. Then Shift-left click the
last result.

To group certain results together, use the column headers on the Results
Summary - Bug Finder tab.

• If the results are not contiguous, Ctrl-left click each result.
• If the results belong to the same group and have the same color, right-click one

result. From the context menu, select Select All Type Results.

For instance, select Select All "Memory leak" Results.
6 To save your review comments, select File > Save. Your comments are saved with

the verification results.

Related Examples
• “View Results” on page 13-2
• “Filter and Group Results” on page 13-5

 Filter and Group Results

13-5

Filter and Group Results

This example shows how to filter and group defects on the Results Summary - Bug
Finder tab. To organize your review of results, use filters and groups when you want to:

• Review only high-impact defects.

For more information on impact, see “Classification of Defects by Impact” on page
5-12.

• Review certain types of defects in preference to others.

For instance, you first want to address the defects resulting from Missing or invalid
return statement.

• Review only new results found since the last analysis.
• Not address the full set of coding rule violations detected by the coding rules checker.
• Review only those defects that you have already assigned a certain status.

For instance, you want to review only those defects to which you have assigned the
status, Investigate.

• Review defects from a particular file or function. Because of continuity of code,
reviewing these defects together can help you organize your review process.

If you have written the code for a particular source file, you can review the defects
only in that file.

In this section...

“Filter Results” on page 13-5
“Group Results” on page 13-6

Filter Results

1 To review only new results found since the last verification, on the Results
Summary - Bug Finder tab, select New results.

2 To suppress code metrics from your results, on the Results Summary - Bug
Finder tab, select Show > Defects & Rules.

You can increase the options on the Show menu or create your own options from the
Polyspace user interface. For examples, see:

13 View Results in Eclipse

13-6

• “Suppress Certain Rules from Display in One Click” on page 3-18
• “Limit Display of Defects” on page 5-20
• “Review Code Metrics” on page 5-30

3
For all other filters, click the icon on the appropriate column.

Item to Filter Column

Results in a certain file or function File or Function
Results with a certain severity or status Severity or Status
Results in a certain group such as
numerical or data flow

Group

Results with a certain impact Information
Results that correspond to certain CWE
IDs.

CWE ID

For more information, see “Find CWE
Identifiers from Defects” on page 5-61.

4 Clear All. Select the boxes for the results that you want displayed.

Alternatively, clear the boxes for the results that you do not want displayed.

Note: You can also apply multiple filters.

Group Results

On the Results Summary - Bug Finder tab:

• To show results without grouping, select Group by > None.
• To show results grouped by result type, select Group by > Family.

• The defects are organized by the defect groups. For more information on the
groups, see “Defects”.

• The coding rule violations are grouped by type of coding rule. For more
information, see “Coding Rules”.

 Filter and Group Results

13-7

• The code metrics are grouped by scope of metric. For more information, see “Code
Metrics”.

• To show results grouped by file, select Group by > File.

Within each file, the results are grouped by function. The results that are not
associated with a particular function are grouped under File Scope.

• For C++ code, to show results grouped by class, select Group by > Class. The results
that are not associated with a particular class are grouped under Global Scope.

Within each class, the results are grouped by method.

Related Examples
• “View Results” on page 13-2
• “Review and Fix Results” on page 13-3

13 View Results in Eclipse

13-8

Understanding the Results Views

In this section...

“Results Summary” on page 13-8
“Result Details” on page 13-10

Results Summary

The Results Summary - Bug Finder tab lists the defects and coding rule violations
along with their attributes. To organize your results review, from the Group by list on
this tab, select one of the following options:

• None: Lists defects and coding rule violations without grouping. By default the
results are listed in order of severity.

• Family: Lists results grouped by defect group. For more information on the defect
groups, see “Bug Finder Defect Groups” on page 5-52.

• Class: Lists results grouped by class. Within each class, the results are grouped
by method. The first group, Global Scope, lists results not occurring in a class
definition.

This option is available for C++ code only.
• File: Lists results grouped by file. Within each file, the results are grouped by

function.

For each defect, the Results Summary pane contains the defect attributes, listed in
columns:

Attribute Description

Family Grouping to which the defect belongs. For example, if you
choose the Checks by File/Function grouping, this column
contains the name of the file and function containing the
defect.

ID Unique identification number of the defect. In the default
view on the Results Summary - Bug Finder tab, the defects
appear sorted by this number.

Type Defect or coding rule violation.

 Understanding the Results Views

13-9

Attribute Description

Group Category of the defect. For more information on the defect
groups, see “Bug Finder Defect Groups” on page 5-52.

Check Description of the defect
CWE ID CWE ID-s that correspond to the defect. For more information,

see “Mapping Between CWE Identifiers and Defects” on page
5-63.

File File containing the instruction where the defect occurs
Class Class containing the instruction where the defect occurs. If the

defect is not inside a class definition, then this column contains
the entry, Global Scope.

Function Function containing the instruction where the defect occurs.
If the function is a method of a class, it appears in the format
class_name::function_name.

Severity Level of severity you have assigned to the defect. The possible
levels are:

• High

• Medium

• Low

• Not a defect

Status Review status you have assigned to the check. The possible
statuses are:

• Fix

• Improve

• Investigate

• Justified

• No action planned

• Other

Comments Comments you have entered about the check

To show or hide any of the columns, right-click anywhere on the column titles. From the
context menu, select or clear the title of the column that you want to show or hide.

13 View Results in Eclipse

13-10

Using this pane, you can:

• Navigate through the checks. For more information, see “Review and Fix Results” on
page 13-3.

• Organize your check review using filters on the columns. For more information, see
“Filter and Group Results” on page 13-5.

Result Details

The Result Details pane contains detailed information about a specific defect. Select a
defect on the Results Summary - Bug Finder tab to reveal further information about
the defect on the Result Details pane.

• The top right hand corner shows the file and function containing the defect, in the
format file_name/function_name.

• The yellow box contains the name of the defect, along with an explanation.
• The Event column lists the sequence of code instructions causing the defect. The

Scope column lists the name of the function containing the instructions. The Line
column lists the line number of the instructions.

• The Variable trace check box when selected reveals an additional set of instructions
that are related to the defect.

•
The button allows you to access documentation for the defect.

14

Check Coding Rules from Microsoft
Visual Studio

• “Activate C++ Coding Rules Checker” on page 14-2
• “Exclude Files From Analysis” on page 14-4

14 Check Coding Rules from Microsoft Visual Studio

14-2

Activate C++ Coding Rules Checker

To check coding rule compliance, before running an analysis, you must set an option in
your project. Polyspace software finds the violations during the compile phase. You can
view coding rule violations alongside your analysis results.

To set the rule checking option:

1 Select the files you wish to analyze.
2 Right-click on your selection and select Edit Polyspace Configuration.
3 In the Polyspace Bug Finder Configuration window, from the Configuration tree,

select Coding Rules & Code Metrics.
4 Under Coding Rules & Code Metrics, select the check box next to the type of

coding rules you wish to check.

For C++ code, you can check compliance with MISRA C++ or JSF C++, and a custom
rules file.

5 For MISRA and JSF rule checking, you can select a subset of rules to check from the
corresponding drop-down list.

The tables below show the options for each coding rule set:

MISRA C++

Option Explanation

required-rules
All required MISRA C++ coding rules. Violations are
reported as warnings.

all-rules
All required and advisory MISRA C++ coding rules.
Violations are reported as warnings.

SQO-subset1

A subset of MISRA C++ rules that have a direct impact on
the selectivity. Violations are reported as warnings. For
more information, see “Software Quality Objective Subsets
(C++)” on page 2-61.

SQO-subset2

A second subset of rules that have an indirect impact on
the selectivity, as well as the rules contained in SQO-
subset1. Violations are reported as warnings. For more
information, see “Software Quality Objective Subsets (C+
+)” on page 2-61.

 Activate C++ Coding Rules Checker

14-3

Option Explanation

custom

A specified set of MISRA C++ coding rules. When you
select this option, you must specify the MISRA C++ rules
to check and whether to report an error or warning for
violations of each rule. For more information, see “Select
Specific MISRA or JSF Coding Rules” on page 3-6.

JSF C++

Option Explanation

shall-rules All Shall rules, which are mandatory rules that require
checking.

shall-will-rules All Shall and Will rules. Will rules are mandatory rules
that do not require checking.

all-rules All Shall, Will, and Should rules. Should rules are
advisory rules.

custom A specified set of JSF C++ coding rules. When you select
this option, you must specify the JSF C++ rules to check
and whether to report an error or warning for violations
of each rule. For more information, see “Select Specific
MISRA or JSF Coding Rules” on page 3-6.

6 For Custom rule checking, in the corresponding field, specify the path to your custom
rules file or click Edit to create one. See “Create Custom Coding Rules” on page 3-9
for more information.

7 Save you changes and close the configuration window.

When you run an analysis, Polyspace checks coding rule compliance during the
compilation phase of the analysis.

14 Check Coding Rules from Microsoft Visual Studio

14-4

Exclude Files From Analysis

This example shows how to exclude files from coding rules checking and defect checking.
Excluding header files, include files, or files your are not working on allows you focus on
defects in your purview.

1 Open the project configuration.
2 In the Configuration tree view, select Inputs & Stubbing.
3 Select the Files and folders to ignore check box.
4 From the corresponding drop-down list, select one of the following:

• all-headers (default) — Excludes header files in the Include folders of your
project. For example .h or .hpp files.

• all — Excludes all include files in the Include folders of your project. For
example, if you are checking a large code base with standard or Visual headers,
excluding include folders can significantly improve the speed of code analysis.

• custom — Excludes files or folders specified in the File/Folder view. To add

files to the custom File/Folder list, select to choose the files and folders to
exclude. To remove a file or folder from the list of excluded files and folders, select

the row. Then click .

Related Examples
• “Customize Polyspace Options” on page 15-8

15

Find Bugs from Microsoft Visual
Studio

• “Run Polyspace in Visual Studio” on page 15-2
• “Monitor Progress in Visual Studio” on page 15-5
• “Customize Polyspace Options” on page 15-8
• “Configuration File and Default Options” on page 15-9
• “Bug Finding in Visual Studio” on page 15-10

15 Find Bugs from Microsoft Visual Studio

15-2

Run Polyspace in Visual Studio

To set up and start an analysis:

1 In the Solution Explorer view, select one or more files that you want to analyze.
2 Right-click the selection, and select Polyspace Verification.

The Easy Settings dialog box opens.

3 In the Easy Settings dialog box, you can specify the following options for your
analysis:

 Run Polyspace in Visual Studio

15-3

• Under Settings, configure the following:

• Precision — Precision of analysis
• Passes — Level of analysis
• Results folder – Location where software stores analysis results

• Under Verification Mode Settings, configure the following:

• Generate main — Polyspace generates a main or Use existing — Polyspace
uses an existing main

• Class — Name of class to analyze
• Class analyzer calls — Functions called by generated main
• Class only — Analysis of class contents only
• Main generator write — Type of initialization for global variables
• Main generator calls — Functions (not in a class) called by generated main
• Function called before main — Function called before the generated main

• Under Scope, you can modify the list of files and C++ classes to analyze.

a Select . The Select Files and Classes dialog box opens.

15 Find Bugs from Microsoft Visual Studio

15-4

b Select the classes that you want to analyze, then click Add.

In the Configuration pane in the Polyspace environment, you can configure advanced
options not in the Easy Settings dialog box. See “Customize Polyspace Options” on
page 15-8.

4 Make sure the Use Code Prover analysis check box is cleared.
5 Click Start to start the analysis.

To follow the progress of an analysis, see “Monitor Progress in Visual Studio” on
page 15-5

 Monitor Progress in Visual Studio

15-5

Monitor Progress in Visual Studio

Local Analysis

1 Open the Polyspace Log view to follow the progress of your analysis.

If Polyspace finds compilation issues, the errors are highlighted as links. Click a link
to display the file and line that produced the error.

15 Find Bugs from Microsoft Visual Studio

15-6

 Monitor Progress in Visual Studio

15-7

2 To stop an analysis, on the Polyspace Log toolbar, click X.

Remote Analysis

1 Open the Polyspace Log view to follow the progress of your analysis.

If Polyspace finds compilation issues, the errors are highlighted as links. Click a link
to display the file and line that produced the error.

To stop a verification during the compilation phase, on the Polyspace Log toolbar,
click X.

After compilation, Polyspace sends your analysis to the remote server.
2 Select Polyspace > Job Monitor.
3 In the Polyspace Job Monitor, right-click your project and select View Log File

To stop a remote analysis after compilation, use the Job Monitor interface.

Related Examples
• “Run Polyspace in Visual Studio” on page 15-2
• “Open Results in Polyspace Environment” on page 16-2

15 Find Bugs from Microsoft Visual Studio

15-8

Customize Polyspace Options

In the Easy Settings dialog box in Visual Studio, you specify only a subset of the
Polyspace analysis options.

To customize other analysis options:

1 Select the files you wish to analyze.
2 Right-click on your selection and select Edit Polyspace Configuration from the

context menu.
3 In the Polyspace Bug Finder configuration window, use the different panes to

customize your analysis options.

For more information about specific options, see “Analysis Options for C++”.
4 Save your changes and close the configuration window.

Next time you run an analysis, Polyspace uses the
ProjectName_UserSettings.psprj settings.

 Configuration File and Default Options

15-9

Configuration File and Default Options

Some options are set by default while others are extracted from the Visual Studio project
and stored in the associated Polyspace configuration file.

• The following table shows Visual Studio options that are extracted automatically, and
their corresponding Polyspace options:

Visual Studio Option Polyspace Option

/D <name> -D <name>

/U <name> -U <name>

/MT -D_MT

/MTd -D_MT -D_DEBUG

/MD -D_MT -D_DLL

/MDd -D_MT -D_DLL -D_DEBUG

/MLd -D_DEBUG

/Zc:wchar_t -wchar-t-is keyword

/Zc:forScope -for-loop-index-scope in

/FX -support-FX-option-results

/Zp[1,2,4,8,16] -pack-alignment-value

[1,2,4,8,16]

• Source and include folders (-I) are also extracted automatically from the Visual
Studio project.

• Default options passed to the kernel depend on the Visual Studio release: -dialect
Visual7.1 (or -dialect visual8) -OS-target Visual -target i386

15 Find Bugs from Microsoft Visual Studio

15-10

Bug Finding in Visual Studio

You can apply the bug finding functionality of Polyspace software to code that you
develop within the Visual Studio Integrated Development Environment (IDE).

A typical workflow is:

1 Use the Visual Studio editor to create a project and develop code within this project.
2 Set up the Polyspace analysis by configuring analysis options and settings, and then

start the analysis.
3 Monitor the analysis.
4 Open the verification results and review in the Polyspace environment.

Before you can verify code in Visual Studio, you must install the Polyspace add-in for
Visual Studio. For more information , see “Install Polyspace Add-In for Visual Studio”.

16

Open Results from Microsoft Visual
Studio

16 Open Results from Microsoft Visual Studio

16-2

Open Results in Polyspace Environment

After your analysis finishes running in Visual Studio, open the Polyspace environment to
view your results. If you ran a server analysis, download the results before opening the
Polyspace environment.

To view your results:

•
From the Polyspace Log window, select .

• Select Polyspace > Polyspace.

Then, open your results from the Polyspace interface. For instructions, see “Open
Results” on page 5-2.

Related Examples
• “Review and Fix Results” on page 5-24
• “Run Polyspace in Visual Studio” on page 15-2

17

Troubleshooting in Polyspace Bug
Finder

• “View Error Information When Verification Stops” on page 17-2
• “Troubleshoot Compilation and Linking Errors” on page 17-4
• “Contact Technical Support” on page 17-5
• “Header File Location Not Specified” on page 17-7
• “Polyspace Cannot Find the Server” on page 17-8
• “Insufficient Memory During Report Generation” on page 17-9
• “Errors From Disk Defragmentation and Antivirus Software” on page 17-10
• “Syntax Errors Due to Unknown Keywords” on page 17-11
• “Undeclared Identifier” on page 17-12
• “Missing Identifiers with Keil or IAR Dialect” on page 17-13
• “Unknown Prototype” on page 17-14
• “Cannot Find Include File” on page 17-16
• “#error Directive” on page 17-17
• “Object is Too Large” on page 17-18
• “Errors From Special Characters” on page 17-21
• “Initialization of Static Class Members (C++)” on page 17-22
• “Double Declarations of Standard Template Library Functions” on page 17-23
• “GNU Dialect” on page 17-24
• “ISO versus Default Dialects” on page 17-27
• “Visual Dialects” on page 17-29
• “Eclipse Java Version Incompatible with Polyspace Plug-in” on page 17-31

17 Troubleshooting in Polyspace Bug Finder

17-2

View Error Information When Verification Stops

If verification stops, you can view error information in the user interface or in the log file.

In this section...

“View Error Information in User Interface” on page 17-2
“View Error Information in Log File” on page 17-2

View Error Information in User Interface

1 View the errors on the Output Summary tab.
2 To open the source code at the line containing the error, double-click the message.
3 To search the log, on the Search pane, enter your search term. From the drop down

list on this pane, select Output Summary or Run Log.

If the Search pane is not open by default, select Windows > Show/Hide View >
Search.

View Error Information in Log File

You can view errors directly in the log file. The log file is in your results folder. To open
the log file:

1 Right-click the result folder name on the Project Browser pane. From the context
menu, select Open Folder with File Manager.

 View Error Information When Verification Stops

17-3

2 Open the log file, Polyspace_R20##n_ProjectName_date-time.log
3 To view the errors, scroll through the verification log file, starting at the end and

working backward.

The following example shows sample log file information. The error has occurred
because a variable var used in the code is not defined earlier.

C:\missing_include.c, line 4: error: identifier "var" is undefined

| var = func();

| ^

1 error detected in the compilation of "missing_include.c".

C:\missing_include.c: warning: Failed compilation.

Global compilation phase...

17 Troubleshooting in Polyspace Bug Finder

17-4

Troubleshoot Compilation and Linking Errors

When you obtain an error message related to compilation or linking, try checking
whether the error message is related to the target operating system or the dialect that
you specified.

• Sometimes, certain macros in your code are defined only for a specific operating
system. You use the macros to activate code specific to that operating system. Unless
you specify your target operating system, Polyspace does not consider that those
macros have been defined.

For more information on how to specify the target operating system, see “Target
operating system (C/C++)”.

• Sometimes, your compilers can allow specific language extensions. Unless you specify
your dialect, Polyspace produces compilation errors for those extensions.

For more information on how to specify dialect, see “Dialect (C)” or “Dialect (C++)”.

 Contact Technical Support

17-5

Contact Technical Support

In this section...

“Provide System Information” on page 17-5
“Provide Information About the Issue” on page 17-5

Provide System Information

When you enter a support request, provide the following system information:

• Hardware configuration
• Operating system
• Polyspace and MATLAB license numbers
• Specific version numbers for Polyspace products
• Installed Bug Report patches

To obtain your configuration information, do one of the following:

• In the Polyspace user interface, select Help > About.
• At the command line, run the following command:

• UNIX — matlabroot/polyspace/bin/polyspace-code-prover-nodesktop
-ver

• DOS — MATLAB_Install\polyspace\bin\polyspace-code-prover-
nodesktop -ver

Provide Information About the Issue

If you face compilation issues with your project, see “Troubleshooting in Polyspace
Code Prover”. If you are still having issues, contact technical support with the following
information:

• The verification log.

The verification log is a text file generated in your results folder and titled
Polyspace_version_project_date_time.txt. It contains the error message, the
options used for the verification and other relevant information.

17 Troubleshooting in Polyspace Bug Finder

17-6

• The source files related to the compilation error, if possible.

If you cannot provide the source files:

• Try to provide a screenshot of the source code section that causes the compilation
issue.

• Try to reproduce the issue with a different code. Provide that code to technical
support.

If you are having trouble understanding a result, see “Polyspace Bug Finder Results”. If
you are still having trouble understanding the result, contact technical support with the
following information:

• The verification log.

The verification log is a text file generated in your results folder and titled
Polyspace_version_project_date_time.txt. It contains the the options used
for the verification and other relevant information.

• The source files related to the result if possible.

If you cannot provide the source files:

• Try provide a screenshot of the relevant source code from the Source pane on the
Polyspace user interface.

• Try to reproduce the problem with a different code. Provide that code to technical
support.

 Header File Location Not Specified

17-7

Header File Location Not Specified

Message

Could not find include file "myHeader.h"

Possible Cause

Your code #includes a header file, for instance, myHeader.h. However, the include
folders that you specify do not contain the header file.

Solution

Do one of the following:

• Add the missing header file to the specified include folder.
• Specify another include folder that contains the missing file.

For more information, see “Add Source Files and Include Folders” on page 1-29.

17 Troubleshooting in Polyspace Bug Finder

17-8

Polyspace Cannot Find the Server

Message

Error: Cannot instantiate Polyspace cluster

| Check the -scheduler option validity or your default cluster profile

| Could not contact an MJS lookup service using the host computer_name.

 The hostname, computer_name, could not be resolved.

Possible Cause

Polyspace uses information provided in Preferences to locate the server. If this
information is incorrect, the software cannot locate the server.

Solution

Provide correct server information.

1 Select Tools > Preferences.
2 Select the Server Configuration tab. Provide your server information.

For more information, see “Set Up Server for Metrics and Remote Analysis”.

 Insufficient Memory During Report Generation

17-9

Insufficient Memory During Report Generation

Message
....

Exporting views...

Initializing...

Polyspace Report Generator

Generating Report

 Converting report

Opening log file: C:\Users\auser\AppData\Local\Temp\java.log.7512

Document conversion failed

.....

Java exception occurred:

java.lang.OutOfMemoryError: Java heap space

Possible Cause

During generation of very large reports, the software can sometimes indicate that there
is insufficient memory.

Solution

If this error occurs, try increasing the Java® heap size. The default heap size in a 64-bit
architecture is 1024 MB.

To increase the size:

1 Navigate to matlabroot\polyspace\bin\architecture. Where:

• matlab is the installation folder.
• architecture is your computer architecture, for instance, win32, win64, etc.

2 Change the default heap size that is specified in the file, java.opts. For example,
to increase the heap size to 2 GB, replace 1024m with 2048m.

3 If you do not have write permission for the file, copy the file to another location. After
you have made your changes, copy the file back to matlabroot\polyspace\bin
\architecture\.

17 Troubleshooting in Polyspace Bug Finder

17-10

Errors From Disk Defragmentation and Antivirus Software

Message
Some stats on aliases use:

 Number of alias writes: 22968

 Number of must-alias writes: 3090

 Number of alias reads: 0

 Number of invisibles: 949

Stats about alias writes:

 biggest sets of alias writes: foo1:a (733), foo2:x (728), foo1:b (728)

 procedures that write the biggest sets of aliases: foo1 (2679), foo2 (2266),

 foo3 (1288)

**** C to intermediate language translation - 17 (P_PT) took 44real, 44u + 0s (1.4gc)

exception SysErr(OS.SysErr(name="Directory not empty", syserror=notempty)) raised.

unhandled exception: SysErr: No such file or directory [noent]

--

--- ---

--- Verifier has encountered an internal error. ---

--- Please contact your technical support. ---

--- ---

Possible Cause

A disk defragmentation tool or antivirus software is running on your machine.

Solution

Try:

• Stopping the disk defragmentation tool.
• Deactivating the antivirus software. Or, configuring exception rules for the antivirus

software to allow Polyspace to run without a failure.

Note: Even if the analysis does not fail, the antivirus software can reduce the speed of
your analysis. This reduction occurs because the software checks the temporary analysis
files. Configure the antivirus software to exclude your temporary folder, for example, C:
\Temp, from the checking process.

 Syntax Errors Due to Unknown Keywords

17-11

Syntax Errors Due to Unknown Keywords

Message

Verifying compilation.c compilation.c:3: syntax error; found `x'

expecting `;'

Code Used

void main(void)

{

 int far x;

 x = 0;

 x++;

}

Cause

The far keyword is unknown in ANSI C. Therefore, Polyspace does not recognize
whether far is a variable or a qualifier.

Solution

Possible solutions include:

• Remove far from the source code, or replace far with a qualifier, such as const or
volatile.

• Remove or replace far in the preprocessed code, only for the analysis. This solution
keeps your source code intact.

• Replace each individual unknown keyword using an analysis option.

For information on the analysis option, see “Preprocessor definitions (C/C++)”.
• Redefine all unknown keywords in a separate header file using #define

directives. Specify that header file using an analysis option.

For information on the analysis option, see “Include (C/C++)”.

17 Troubleshooting in Polyspace Bug Finder

17-12

Undeclared Identifier

Message

Verifying compilation.c compilation.c:3: undeclared identifier `x'

Code Used

void main(void) { x = 0; x++; }

Cause

Polyspace cannot find the variable declaration. Therefore, it cannot identify the variable
type.

Possible causes include:

• The source code you provided does not contain the variable declaration.
• The variable represents a keyword that your compiler recognizes but is not part of the

ANSI C standard. Therefore, Polyspace does not recognize it.

For instance, some compilers interpret __SP as a reference to the stack pointer.

Solution

Possible solutions include:

• Provide the variable declaration if it is missing in your source code.
• If the variable represents a keyword that Polyspace does not recognize, replace

or remove the keyword from your source code or preprocessed code. For more
information, see “Syntax Errors Due to Unknown Keywords” on page 17-11.

 Missing Identifiers with Keil or IAR Dialect

17-13

Missing Identifiers with Keil or IAR Dialect

Message

expected an identifier

Possible Cause

If you select Keil or IAR as your dialect, the software removes certain keywords during
preprocessing. If you use these keywords as identifiers such as variable names, a
compilation error occurs.

Solution

Specify that Polyspace must not remove the keywords during preprocessing. Enter
__PST_KEIL_NO_KEYWORDS__ or __PST_IAR_NO_KEYWORDS__ for preprocessor
definitions.

For more information, see “Preprocessor definitions (C/C++)”.

17 Troubleshooting in Polyspace Bug Finder

17-14

Unknown Prototype

Message

Error: function 'myfunc' has unknown prototype

Code Used

var = myfunc(s32var1, ptr->s32var2, 24);

var, s32var1 and s32var2 are signed long variables.

Cause

Your source code does not contain the function prototype.

Solution

Possible solutions are:

• See if your project is missing the include file that contains the function prototype. Add
the folder containing the missing file.

For more information, see “Cannot Find Include File” on page 17-16.
• Specify the function prototype in a separate file. #include this file in all your source

files, only for the purposes of analysis.

1 In an include file, for example, myinclude.h, specify the complete prototype for
the function:

#ifndef _INC_H

#define _INC_H

extern signed long myfunc(signed long, signed long, signed long);

#endif

2 Specify that Polyspace must #include the file myinclude.h in your source files
during analysis.

 Unknown Prototype

17-15

The file is included only for the purposes of analysis. Your original source files
remain intact. For more information on the analysis option, see “Include (C/C++)”.

17 Troubleshooting in Polyspace Bug Finder

17-16

Cannot Find Include File

Messages

Warning: could not find include file "one_file.h"

Code Used

#include "one_file.h"

Cause

The include folders that you specify do not contain the header file one_file.h.

The missing header file can contain a function prototype. If your source code uses the
function, Polyspace Bug Finder determines the function prototype from the function
call instance. The prototype that Polyspace Bug Finder determines can potentially be
different from what you expect.

Solution

Specify the folder that contains the missing header file one_file.h.

• In the user interface, add the folder to your project.

For more information, see “Add Source Files and Include Folders” on page 1-29.
• At the command line, use the flag -I with the polyspace-bug-finder-nodesktop

command.

For more information, see -I.

 #error Directive

17-17

#error Directive

Message

#error directive: !Unsupported platform; stopping!

Code Used

#if defined(__BORLANDC__) || defined(__VISUALC32__)

define MYINT int // then use the int type

#elif defined(__GNUC__) // GCC doesn't support myint

define MYINT long // but uses 'long' instead

#else

error !Unsupported platform; stopping!

#endif

Cause

The analysis terminates in the compilation phase. The error log displays a #error
directive indicating an unsupported platform. The compilation stops because Polyspace
does not recognize one of the three compilation flags, __BORLANDC__, __VISUALC32__,
or __GNUC__.

Solution

For successful compilation, do one of the following:

• Explicitly define one of the compilation flags __BORLANDC__, __VISUALC32__, or
__GNUC__.

For more information, see “Preprocessor definitions (C/C++)”.
• Specify a dialect such as visual12.0 or gnu4.9. Specifying a dialect defines some of

the compilation flags for the analysis.

For more information, see:

• C: “Dialect (C)”
• C++: “Dialect (C++)”

17 Troubleshooting in Polyspace Bug Finder

17-18

Object is Too Large

Issue

The analysis terminates during compilation with a message indicating that an object is
too large. The error happens when the software detects an object such as an array, union,
structure, or class, that is too big for the pointer size of the selected target.

Message

Limitation: struct or union is too large

Code Used

You specify a pointer size of 16 bits. The maximum object size allocated to a pointer,
and therefore the maximum allowed size for an object, can be 216-1 bytes. However, you
declare a structure as follows:

• struct S

{

 char tab[65536];

}s;

• struct S

{

 char tab[65534];

 int val;

}s;

Solution

1 Check the pointer size that you specified through your target processor type. For
more information, see “Target processor type (C/C++)”.

For instance, in the following, the pointer size for a custom target My_target is 16
bits.

 Object is Too Large

17-19

2 Change your code or specify a different pointer size.

For instance, you can:

17 Troubleshooting in Polyspace Bug Finder

17-20

• Declare an array of smaller size in the structure.

If you are using a predefined target processor type, the pointer size is likely
to be the same as the pointer size on your target architecture. Therefore, your
declaration might cause errors on your target architecture.

• Change the pointer size of the target processor type that you specified, if possible.

Otherwise, specify another target processor type with larger pointer size or define
your own target processor type. For more information on defining your own
processor type, see “Generic target options (C/C++)”.

Note: Polyspace imposes an internal limit of 128 MB on the size of data
structures. Even if your target processor type specification allows data structures
of larger size, this internal limit constrains the data structure sizes.

 Errors From Special Characters

17-21

Errors From Special Characters

Polyspace does not fully support extended ASCII characters, such as accented letters or
Kanji characters. If you use extended ASCII in your file or folder names, your Polyspace
analysis may fail due to file access errors. Error messages you might see include:

• No source files to analyze.

• Control character not valid.

• Cannot create directory Folder_Name.

Workaround

Change the unsupported ASCII characters to standard US-ASCII characters.

17 Troubleshooting in Polyspace Bug Finder

17-22

Initialization of Static Class Members (C++)

When a data member of a class is declared static in the class definition, it is a static
member of the class. You must initialize static data members outside the class because
they exist even when no instance of the class has been created.

class Test

{

public:

 static int m_number = 0;

};

Error message:
Error: a member with an in-class initializer must be const

Corrected code:

in file Test.h in file Test.cpp

class Test

{

public:

static int m_number;

};

int Test::m_number = 0;

 Double Declarations of Standard Template Library Functions

17-23

Double Declarations of Standard Template Library Functions

Consider the following code.

#include <list>

void f(const std::list<int*>::const_iterator it) {}

void f(const std::list<int*>::iterator it) {}

void g(const std::list<int*>::const_reverse_iterator it) {}

void g(const std::list<int*>::reverse_iterator it) {}

The declared functions belong to list container classes with different iterators.
However, the software generates the following compilation errors:

error: function "f" has already been defined

error: function "g" has already been defined

You would also see the same error if, instead of list, the specified container was
vector, set, map, or deque.

To avoid the double declaration errors, do one of the following:

• Deactivate automatic stubbing of standard template library functions. For more
information, see “No STL stubs (C++)”.

• Define the following Polyspace preprocessing directives:

• __PST_STL_LIST_CONST_ITERATOR_DIFFER_ITERATOR__

• __PST_STL_VECTOR_CONST_ITERATOR_DIFFER_ITERATOR__

• __PST_STL_SET_CONST_ITERATOR_DIFFER_ITERATOR__

• __PST_STL_MAP_CONST_ITERATOR_DIFFER_ITERATOR__

• __PST_STL_DEQUE_CONST_ITERATOR_DIFFER_ITERATOR__

For example, for the given code, run verification at the command line with the
following flag. The flag defines the appropriate directive for the list container.

-D __PST_STL_LIST_CONST_ITERATOR_DIFFER_ITERATOR__

For more information on defining preprocessor directives, see “Preprocessor
definitions (C/C++)”.

17 Troubleshooting in Polyspace Bug Finder

17-24

GNU Dialect

If you compile your code using a GNU C++ compiler, specify one of the GNU dialects for
the Polyspace analysis. For more information, see “Dialect (C++)”.

If you specify one of the GNU dialects, Polyspace does not produce an error during
the Compile phase because of assembly language keywords such as __asm__
__volatile__. However, Polyspace ignores the content of the assembly-language code
for the analysis.

Polyspace software supports the following GNU elements:

• Variable length arrays
• Anonymous structures:

void f(int n) { char tmp[n] ; /* ... */ }

union A {

 struct {

 double x;

 double y;

 double z;

 };

 double tab[3];

} a;

void main(void) {

 assert(&(a.tab[0]) == &(a.x));

}

• Other syntactic constructions allowed by GCC, except as noted below.
• Statement expressions:

int i = ({ int tmp ; tmp = f() ; if (tmp > 0) { tmp = 0 ; } tmp ; })

Partial Support

Zero-length arrays have the same support as in Visual Mode. They are allowed when
used through a pointer, but not in a local variable.

 GNU Dialect

17-25

Syntactic Support Only

Polyspace software provides syntactic support for the following options, but not semantic
support:

• __attribute__(...) is allowed, but generally not taken into account.
• No special stubs are computed for predeclared functions such as __builtin_cos,

__builin_exit, and __builtin_fprintf).

Not Supported

The following options are not supported:

• The keyword __thread
• Taking the address of a label:

{ L : void *a = &&L ; goto *a ; }

• General C99 features supported by default in GCC, such as complex built-in types
(__complex__, __real__, etc.).

• Extended designators initialization:

struct X { double a; int b[10] } x = { .b = { 1, [5] =2 },

.b[3] = 1, .a = 42.0 };

• Nested functions

Examples

Example 1: _asm_volatile_ keyword

In the following example, for the inb_p function to manage the return of the local
variable _v, the __asm__ __volatile__ keyword is used as follows:

extern inline unsigned char

inb_p (unsigned short port)

{

 unsigned char _v;

 __asm__ __volatile__ ("inb %w1,%0\noutb %%al,$0x80":"=a"

 (_v):"Nd" (port));

 return _v;

17 Troubleshooting in Polyspace Bug Finder

17-26

}

...

Although Polyspace does not produce an error during the Compile phase, it ignores the
assembly code. An orange Non-initialized local variable error appears on the return
statement after verification.

Example 2: Anonymous Structure

The following example shows an unnamed structure supported by GNU:

class x

{

public:

 struct {

 unsigned int a;

 unsigned int b;

 unsigned int c;

 };

 unsigned short pcia;

 enum{

 ea = 0x1,

 eb = 0x2,

 ec = 0x3

 };

 struct {

 unsigned int z1;

 unsigned int z2;

 unsigned int z3;

 unsigned int z4;

 };

};

int main(int argc, char *argv[])

{

 class x myx;

 myx.a = 10;

 myx.z1 = 11;

 return(0);

}

 ISO versus Default Dialects

17-27

ISO versus Default Dialects

The ISO dialect strictly follows the ISO/IEC 14882:1998 ANSI C++ standard. If you
specify the option iso for “Dialect (C++)”, the Polyspace compiler might produce
permissiveness errors. The following code contains five common permissiveness errors
that occur if you specify the option. These errors are explained in detail following the
code.

If you do not specify the option, the Polyspace compiler uses a default dialect that
many C++ compilers use; the default dialect is more permissive with regard to the C++
standard.

Original code (file permissive.cpp):

class B {} ;

class A

{

 friend B ;

 enum e ;

 void f() {

 long float ff = 0.0 ;

 }

 enum e { OK = 0, KO } ;

};

template <class T>

struct traits

{

 typedef T * pointer ;

 typedef T * pointer ;

} ;

template<class T>

struct C

{

 typedef traits<T>::pointer pointer ;

} ;

void main()

{

 C<int> c;

}

If you use iso for dialect, the following errors occur.

17 Troubleshooting in Polyspace Bug Finder

17-28

Error message Original code Corrected code

error: omission of

 "class"

 is nonstandard

friend B; friend class B;

forward declaration of

enum type

is nonstandard

enum e; The line must be removed.

invalid combination of

 type specifiers

long float ff = 0.0; double ff = 0.0

class member typedef

 may not be redeclared
Second instance of

typedef T * pointer;

The line must be removed.

nontype

"traits<T>::pointer

[with T=T]"

 is not a type name

typedef traits<T>::pointer pointer;typedef

typename

traits<T>::pointer

 pointer

The error messages disappear if you specify none for dialect.

 Visual Dialects

17-29

Visual Dialects

The following messages appear if the compiler is based on a Visual® dialect. For more
information, see “Dialect (C++)”.

Import Folder

When a Visual application uses #import directives, the Visual C++ compiler generates
a header file with extension .tlh that contains some definitions. To avoid compilation
errors during Polyspace analysis, you must specify the folder containing those files.

Original code:

#include "stdafx.h"

#include <comdef.h>

#import <MsXml.tlb>

MSXML::_xml_error e ;

MSXML::DOMDocument* doc ;

int _tmain(int argc, _TCHAR* argv[])

{

 return 0;

}

Error message:

"../sources/ImportDir.cpp", line 7: catastrophic error: could not

open source file "./MsXml.tlh"

 #import <MsXml.tlb>

 ^

The Visual C++ compiler generates these files in its “build-in” folder (usually Debug or
Release). In order to provide those files:

• Build your Visual C++ application.
• Specify your build folder for the Polyspace analysis. For more information on the

analysis option, see “Import folder (C++)”.

pragma Pack

Using a different value with the compile flag (#pragma pack) can lead to a linking error
message.

17 Troubleshooting in Polyspace Bug Finder

17-30

Original code:

test1.cpp type.h test2.cpp

#pragma pack(4)

#include "type.h"

struct A

{

 char c ;

 int i ;

} ;

#pragma pack(2)

#include "type.h"

Error message:
Pre-linking C++ sources ...

"../sources/type.h", line 2: error: declaration of class "A" had

a different meaning during compilation of "test1.cpp"

(class types do not match)

 struct A

 ^

 detected during compilation of secondary translation unit

"test2.cpp"

To continue the analysis, use the option “Ignore pragma pack directives (C++)”.

 Eclipse Java Version Incompatible with Polyspace Plug-in

17-31

Eclipse Java Version Incompatible with Polyspace Plug-in

In this section...

“Issue” on page 17-31
“Cause” on page 17-31
“Solution” on page 17-31

Issue

After installing the Polyspace plug-in for Eclipse, when you open the Eclipse or Eclipse-
based IDE, you see this error message:

Java 7 required, but the current java version is 1.6.

You must install Java 7 before using Polyspace plug in.

You see this message even if you install Java 7 or higher.

Cause

Despite installing Java 7 or higher, the Eclipse or Eclipse-based IDE still uses an older
version.

Solution

Make sure that the Eclipse or Eclipse-based IDE uses the compatible Java version.

1 Open the executable_name.ini file that occurs in the root of your Eclipse
installation folder.

If you are running Eclipse, the file is eclipse.ini.
2 In the file, just before the line -vmargs, enter:

-vm

java_install\bin\javaw.exe

Here, java_install is the Java installation folder.

For instance, your product installation comes with the required Java version for
certain platforms. You can force the Eclipse or Eclipse-based IDE to use this version.
In your .ini file, enter the following just before the line -vmargs:

17 Troubleshooting in Polyspace Bug Finder

17-32

-vm

Matlab_install\sys\java\jre\arch\jre\bin\javaw.exe

Here, Matlab_install is your product installation folder, for instance, C:\MATLAB
\R2015b\ and arch is win32 or win64 depending on the product platform.

